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Abstract
We provide a framework for relating certain q-series defined by sums over partitions
to multiple zeta values. In particular, we introduce a space of polynomial functions on
partitions for which the associated q-series are q-analogues of multiple zeta values. By
explicitly describing the (regularized) multiple zeta values one obtains as q → 1, we
extend previous results known in this area. Using this together with the fact that other
families of functions on partitions, such as shifted symmetric functions, are elements
in our space will then give relations among (q-analogues of) multiple zeta values.
Conversely, we will show that relations among multiple zeta values can be ‘lifted’ to
the world of functions on partitions, which provides new examples of functions for
which the associated q-series are quasimodular.

Keywords Functions on partitions · Modular forms · q-Bracket · Multiple zeta values
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1 Introduction

The purpose of this note is to introduce a framework that can be seen as a bridge
between the theory of functions on partitions and (q-analogues of) multiple zeta val-
ues. Multiple zeta values (see (1.5)) are real numbers appearing in various areas of
mathematics and theoretical physics. These real numbers satisfy numerous relations,
such as the so-called double shuffle relations [20]. For these numbers, there exist var-
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ious different q-analogue models, which are q-series degenerating to multiple zeta
values as q → 1. For most of these q-analogues, there exist counterparts for the dou-
ble shuffle relations, and their algebraic setups are well-understood [6, 11, 13, 27, 32].
In this note, we will generalize this setup even further. We will show that there is a
natural analogue of the double shuffle relations on all functions on partitions and then
introduce a class of functions that we call partition analogues of multiple zeta values.
These functions can be seen as the counterpart of q-analogues of multiple zeta values
after applying the so-called q-bracket, introduced by Bloch and Okounkov in [8]. The
space of partition analogues of multiple zeta values contains various classical types of
functions on partitions, such as the shifted symmetric functions, which then, by using
the results in this work, provide new tools to obtain relations among (q-analogues of)
multiple zeta values.

Denote by P the set of all partitions of integers. To a function f : P → Q, we
associate (i) a degree, (ii) a limit Zdeg( f ) and (iii) a power series 〈 f 〉q ∈ Q�q�, in
such a way that asymptotically

(1 − q)deg( f )〈 f 〉q = Zdeg( f ) + O(1 − q)

for real q.
To start with the latter, the q-bracket of f is defined as

〈 f 〉q :=
∑

λ∈P f (λ) q |λ|
∑

λ∈P q |λ| ∈ Q�q�, (1.1)

where |λ|denotes the integer thatλ is a partition of. In case f (λ)has atmost polynomial
growth in |λ|, its q-bracket is holomorphic for |q| < 1. Moreover, we can associate a
degree to f by

deg( f ) = inf
a∈R

{
lim
q→1

(1 − q)a〈 f 〉q converges
}
. (1.2)

We, then, define Zdeg( f ) ∈ R ∪ {±∞} to be the value of the corresponding limit1

limq→1(1− q)deg( f )〈 f 〉q whenever it exists (as it does for all functions in our work).
For example, for f (λ) = |λ| we have

〈 f 〉q =
∞∑

n=1

σ(n) qn, deg( f ) = 2, Zdeg( f ) = ζ(2),

where σ(n) = ∑
d|n d denotes the divisor sum of n and ζ(k) = ∑

m≥1
1

mk a Riemann
zeta value.

Such limits Zdeg( f ) occur as the volumes of certain moduli spaces, e.g., in the
case of the stratum of one-cylinder square-tiled surfaces [16] or in the case of flat
surfaces [14]. In both cases, there are associated functions f in �∗, the space of

1 Here and in the rest of the work we understand q → 1 as the limit where q is real and 0 < q < 1.
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shifted symmetric functions. That is, �∗ = Q[Q2, Q3, . . .], where Qk : P → Q is
given by

Qk(λ) := βk + 1

(k − 1)!
∞∑

i=1

((
λi − i + 1

2

)k−1 − (−i + 1
2

)k−1
)

, (1.3)

where λ = (λ1, λ2, . . .) and βk = ( 1
2k−1 − 1) Bk

k! with Bk the k-th Bernoulli number.
By the Bloch–Okounkov theorem [8] (going back to work of Dijkgraaf and Kaneko–
Zagier [15, 21]) the q-brackets 〈 f 〉q for f ∈ �∗ are quasimodular forms. The space
of quasimodular forms M̃ = Q[Gk | k = 2, 4, 6, . . .] is generated by the Eisenstein
series Gk for all even k ≥ 2

Gk(q) := − Bk

2k! + 1

(k − 1)!
∑

m,r≥1

mk−1qmr , (1.4)

which are holomorphic functions for |q| < 1 (or equivalently, for τ in the complex
upper half plane, with q = e2π iτ ). In fact, M̃ = Q[G2, G4, G6]. As Zdeg(Gk) = ζ(k)

and every modular form can be written as the sum of an Eisenstein series and a
cusp form F , for which Zdeg(F) = 0, it follows that for f ∈ �∗ the correspond-
ing limits Zdeg( f ) are single zeta values. Besides the shifted symmetric functions
there are various other functions on partitions which give rise to quasimodular forms
(see [30]). All of these have limits which lie in Q[ζ(2)]. We will introduce a space
P ⊂ QP of partition analogues of multiple zeta values, whose elements always have
multiple zeta values as their limit. Multiple zeta values are defined for r ≥ 1 and
k1 ≥ 2, k2, . . . , kr ≥ 1 by

ζ(k1, . . . , kr ) :=
∑

m1>···>mr >0

1

mk1
1 · · · mkr

r

∈ R. (1.5)

A natural subspace of P is the space M = { f ∈ P | 〈 f 〉q ∈ M̃} ⊂ P, containing �∗,
whose elements have a quasimodular q-bracket and a limit in Q[ζ(2)]. In particular,
the space P completes the following diagram:

QP Q�q� R

P Zq Z

�∗ ⊂ M M̃ Q[ζ(2)].

〈 〉q
“ lim

q→1
”

⊃ ⊃ ⊃

⊃ ⊃ ⊃ (1.6)

Here,Z denotes theQ-vector space generated by multiple zeta values,Zq denotes the
space of q-analogues of multiple zeta values, studied by many authors (see e.g., [6,
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12, 32] for an overview of different types of q-analogues; in this work, we define Zq

in (3.3), following [6]), and themap limq→1 is between quotationmarks to indicate that
it concerns infinitely many maps f �→limq→1(1 − q)a f , which are well-defined/ill-
defined/regularized depending on f and the value of a.

Polynomial functions on partitions

Let p ∈ Q[x, y]. In [28], the second author studied functions Tp : P → Q (not to be
confused with Hecke operators) of the form

Tp(λ) =
∞∑

m=1

rm (λ)∑

r=1

p(m, r),

where rm(λ) denotes the number of times m occurs as a part in the partition λ. Similar
to the Bloch–Okounkov theorem, for every f ∈ Q[Tp | p ∈ Q[x, y], deg(p) is odd],
the q-bracket 〈 f 〉q is a quasimodular form. Motivated by this construction, we define
the space of partition analogues of multiple zeta values P as the following space which
can be thought of as a space of polynomial functions on partitions.

Definition 1.1 Let P be the image of

	 :
⊕

n≥0

Q[x1, . . . , xn, y1, . . . , yn] → QP ,

where 	 maps the polynomial p(x1, . . . , xn, y1, . . . , yn) to

λ �→
∑

m1>...>mn>0

rm1 (λ)
∑

r1=1

· · ·
rmn (λ)∑

rn=1

p(m1, . . . , mn, r1, . . . , rn).

Moreover, define M = { f ∈ P | 〈 f 〉q ∈ M̃}.
We show that this space P completes the diagram (1.6). In particular, we are able

to compute the degree and limit of elements of P:

Theorem 1.2 Given r ≥ 1 and di , li ∈ Z≥0 for i = 1, . . . , r , let f = 	(
∏

i xdi
i yli

i ).
Then,

deg( f ) = max
j∈{0,...,r}

{∑

i≤ j

(di + 1) +
∑

i> j

(li + 1)

}

.

Moreover, if the maximum is attained for a unique value of j , thenZdeg( f ) ∈ Z≤deg( f ),

where Z≤k denotes the Q-vector space of multiple zeta values ζ(k1, . . . , kr ) with
k1 + . . . + kr ≤ k.



Partitions, multiple zeta values and the q-bracket Page 5 of 46     3 

We will see that the regularized limit of polynomial functions on partitions always
gives regularized multiple zeta values. These limits will be given by bi-multiple zeta
values ζ

(k1,...,kr
d1,...,dr

) ∈ R[T ], which are defined for k1, . . . , kr ≥ 1, d1, . . . , dr ≥ 0 in
Definition 4.22, and which generalize (harmonic regularized) multiple zeta values in
the sense that for k1 ≥ 2, k2, . . . , kr ≥ 1

ζ

(
k1, . . . , kr

0, . . . , 0

)

= ζ(k1, . . . , kr ) .

The other special case of d1, . . . , dr−1 ≥ 0, dr ≥ 1 and k1 = · · · = kr = 1 is given
by

ζ

(
1, . . . , 1

d1, . . . , dr

)

= ξ(d1, . . . , dr ) ,

where we define the conjugated zeta values ξ as follows:

Definition 1.3 For d1, . . . , dr−1 ≥ 0, dr ≥ 1, define the conjugated multiple zeta
value by

ξ(d1, . . . , dr ) :=
∑

0<m1<...<mr

1

m1 · · · mr
�

[ r∏

i=1

( 1

mi
+ . . . + 1

mr

)di
]

,

where � : Q[m−1
1 , . . . , m−1

r ] → Q[m−1
1 , . . . , m−1

r ] is the linear mapping

�
[ 1

ml1
1 · · · mlr

r

]
:= l1! · · · lr !

ml1
1 · · · mlr

r

. (1.7)

By definition it is clear that the conjugated zeta values can be written as linear
combinations of multiple zeta values and as a result of Theorem 4.23 their product
can be expressed by the index-shuffle product formula, e.g., ξ(d1)ξ(d2) = ξ(d1, d2)+
ξ(d2, d1) for d1, d2 ≥ 1. In general, the bi-multiple zeta values will be given by sums
of products of multiple zeta values and their conjugated analogues ξ , e.g., we have
(for k1 ≥ 2, dm ≥ 1)

ζ

(
1, . . . , 1, k1, . . . , kr

d1, . . . , dm, 0, . . . , 0

)

= ξ(d1, . . . , dm) ζ(k1, . . . , kr ) .

The product of the bi-multiple zeta values can be expressed by a generalization of the
usual harmonic product, e.g. we have

ζ

(
k1
d1

)

ζ

(
k2
d2

)

= ζ

(
k1, k2
d1, d2

)

+ ζ

(
k2, k1
d2, d1

)

+ ζ

(
k1 + k2
d1 + d2

)

.

Further, we will see in Theorem 4.23 that the bi-multiple zeta values are invariant
under a certain involution ιs, which will appear naturally when considering functions
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on partitions. In particular, these give a realization of the so-called formal double
Eisenstein space introduced in [7].

In Sect. 4.2, we will introduce an algebraic setup for the elements in P, which can
be seen as a generalization of the classical algebraic setup for multiple zeta values
and their double shuffle relations (cf., [17, 20]). Starting with a linear combination
of multiple zeta values which evaluates to an element in Q[ζ(2)], we then show,
with diagram (1.6) in mind, how to ‘lift’ these to obtain new families of functions
on partitions with quasimodular q-bracket (see Proposition 4.14 and Example 5.2).
In Sect. 5, we will show that not only the analogue of the double shuffle relations
give relations among (q-analogues of) multiple zeta values, but also how families of
polynomial functions on partitions with quasimodular q-bracket can be used to obtain
relations. For example, wewill see that the shifted symmetric functions imply a special
case of the Ohno–Zagier relations and that the arm-legmoments of Zagier ([30]) imply
the sum formula for multiple zeta values.

2 Functions on partitions

2.1 Multiplication, conjugation, brackets and derivations

Denote by P the set of all partitions of integers. We make use of the following
equivalent definitions of partitions:

(i) Finite non-increasing sequences of positive integers (λ1, λ2, . . . , λ), where we
write (λ) for the length  of the partition λ and |λ| = λ1 + . . . + λ for the size.

(ii) Infinite sequences (λ1, λ2, . . . ) with λ1 ≥ λ2 ≥ . . . and λ j = 0 for all but
finitely many j ;

(iii) (Stanley’s multi-rectangular coordinates) Two sequences r andmof non-negative
integers, of the same length d, and of which m is strictly decreasing. These
sequences correspond to the partition

r × m = (m1, . . . , m1︸ ︷︷ ︸
r1

, . . . , md , . . . , md︸ ︷︷ ︸
rd

)

in the first definition. This representation is unique if the elements of r and m
are positive. Often, given λ ∈ P , we write r(λ) = (r1, . . . , rd) and m(λ) =
(m1, . . . , md) for such sequences. The integerd is called thedepth of the partition.

(iv) Multisets of integers, in which the integer m has

rm(λ) = #{ j | λ j = m}

appearances.

Example 2.1 The smallest partition is the empty partition (of the integer 0), writ-
ten as (), (0, 0, . . .), () × (),∅ respectively. The Stanley coordinates of the partition
λ = (6, 4, 4, 3, 2, 2, 2, 1) can be read of by the decomposition λ = (1, 2, 1, 3, 1) ×
(6, 4, 3, 2, 1).
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There are two elementary operations on the space of functions f , g ∈ QP :

(i) pointwise multiplication, i.e., the multiplication ( f � g)(λ) = f (λ) g(λ) induced
by the multiplication on Q,

(ii) conjugation, i.e., ω( f )(λ) = f (λ), where λ denotes the transpose of the parti-
tion λ.

We adapt both operations to make them equivariant with respect to the q-bracket (1.1).
To do so, we introduce the u-bracket [28, Definition 3.2.1].

Definition 2.2 The vector space isomorphism 〈 〉u : QP → Q�u1, u2, . . .� is given
by

〈 f 〉u :=
∑

λ∈P f (λ) uλ
∑

λ∈P uλ

(uλ = uλ1 uλ2 · · · , u0 = 1).

For f ∈ QP we call 〈 f 〉u the u-bracket of f . For all λ ∈ P we write aλ( f ) to denote
the coefficient of uλ in 〈 f 〉u , i.e., 〈 f 〉u = ∑

λ∈P aλ( f ) uλ .

Note that the u-bracket reduces to the q-bracket (1.1) by specializing ui = qi for
all integers i .

The u-bracket is not an algebra homomorphism with respect to the pointwise
product onQP . Therefore, we introduce the harmonic product onQP , making the u-
bracket into an algebra homomorphism. Even so, we introduce a conjugation ιmaking
the u-bracket equivariant.

Definition 2.3 Given F, G ∈ Q�u1, u2, . . .�, we define

(i) the harmonic product as the multiplication F � G = FG, where FG denotes
the standard product of F and G in Q�u1, u2, . . .�,

(ii) the conjugation of F = ∑
λ∈P aλuλ by ι(F) = ∑

λ∈P aλuλ , where λ denotes
the transpose of the partition λ,

(iii) the shuffle product as the multiplication F � G = ι(ι(F) � ι(G)),
(iv) the derivative of F = ∑

λ∈P aλuλ by DF = ∑
λ∈P aλ|λ| uλ .

We extend these definitions to QP by the isomorphism given by the u-bracket, i.e.,
for f , g ∈ QP we define

(i) the harmonic product by 〈 f � g〉u = 〈 f 〉u〈g〉u ,
(ii) the conjugation by 〈ι( f )〉u = ι〈 f 〉u ,
(iii) the shuffle product as the multiplication 〈 f � g〉u = 〈 f 〉u � 〈g〉u ,
(iv) the derivative of f by 〈D f 〉u = D〈 f 〉u .

Remark 2.4 In [28] the harmonic product was called the induced product, as it is
induced from the product on Q�u1, u2, . . .�. In the context of the present work, the
name harmonic product is more appropriate, as will be indicated in Example 5.1.

Proposition 2.5 For all f , g ∈ QP

〈ι( f )〉q = 〈 f 〉q , 〈 f � g〉q = 〈 f 〉q 〈g〉q = 〈 f � g〉q and q
∂

∂q
〈 f 〉q = 〈D f 〉q .
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Proof The first equality follows directly by noting that a partition λ and its conjugate λ

are of the same size, so that substituting qi for ui has the same effect on uλ and uλ .
By definition of the shuffle product, the second identity follows from the first. The last
equality follows directly by noting that 〈 f 〉u |ui =qi = 〈 f 〉q .

The harmonic product, conjugation, shuffle product and derivative can be given by
explicit formulas on the level of functions inQP . For this, recall that a strict partition
is a partition for which all (non-zero) parts are distinct. Let the Möbius function
μ : P → {±1} be given by

μ(λ) =
{

(−1)(λ) λ is strict

0 else.

Denote the convolution product of f , g ∈ QP by � (we reserve the symbol ∗ for the
harmonic product), i.e.,

( f �g)(λ) =
∑

α∪β=λ

f (α) g(β),

where in the summation we take the union of partitions considered as multisets.
Write 1 : P → Q for the inverse of the Möbius function under convolution, i.e.,
1(λ) = 1. Then, by a direct computation, for all f , g ∈ QP , we have (see also [28,
Proposition 3.2.3])

f � g = f �g�μ

ι( f ) = ω( f �μ)�1

f � g = ω(ω( f �μ)�ω(g�μ))�1, (2.1)

where we recall ω( f )(λ) = f (λ). Also, by [28, Proposition 5.1.1] for all f ∈ QP

we have

D f (λ) = f (λ)|λ| − ( f � | · |)(λ).

Two subspaces of QP are particularly well-behaved with respect to these opera-
tions.

Definition 2.6 We define

H := { f ∈ QP | f (λ) = f (ρ) if r(λ) = r(ρ) for all λ, ρ ∈ P}
J := { f ∈ QP | ( f �μ)(λ) = ( f �μ)(ρ) ifm(λ) = m(ρ) for all λ, ρ ∈ P},

where r(λ) and m(λ) are the Stanley coordinates for λ.

For example, the Möbius function μ is in H , and for any m ≥ 1 the function
λ �→ rm(λ) is an element of J .
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Lemma 2.7 The space H is closed under the harmonic product � and J is closed
under the shuffle product � . In fact, the spaces are conjugate, i.e., ιH = J .

Proof Suppose λ = r × m and ρ = r × s for some sequences r,m, s. Given α ⊂ λ

(where we consider α and λ to be multisets), there is some sequence a such that
α = a × m. Then, a × s ⊂ ρ. This gives a bijection between subsets of λ and of ρ.
Moreover, if f ∈ H , then f (a × m) = f (a × s). Hence, by the expression in (2.1),
we conclude that H is closed under the harmonic product.

Next, we show that H and J are conjugate under ι. By the same argument as
above, if f ∈ H , then also f �μ. Note that aλ( f ) = ( f �μ)(λ), where aλ( f ) is
defined by Definition 2.2. Hence, if f ∈ H or f ∈ J , then aλ( f ) and aρ( f ) agree
whenever r(λ) = r(ρ) orm(λ) = m(ρ) respectively. The statement now follows from
the definition of ι using the fact that the conjugate of (r1, . . . , rd) × (m1, . . . , md) is
given by (m1, m2 − m1, . . . , md − md−1) × (r1 + . . . + rd , . . . , r1).

Remark 2.8 A more explicit definition of the spaceJ is as follows. Given λ ∈ P of
depth d, write λ = r×m and for I ⊂ [d] := {1, . . . , d}, letmI be the strict partition
with parts mi for i ∈ I . Then f ∈ J precisely if f (λ) is determined by the value
of f on all strict partitions contained in λ in the following way:

f (λ) =
∑

I∪J=[d]
(−1)|J | ∏

i∈I

ri

∏

j∈J

(r j − 1) f (mI ).

2.2 Degree and limits

Recall from (1.1) and (1.2) the definition of the q-bracket, degree deg( f ) and limit
Zdeg( f ) of a function f on partitions.

Example 2.9 Let us consider several examples of degree limits of interesting functions
on partitions:

(i) Let d(λ) equal the number of different parts of λ, i.e., d is the depth of λ. As

∑

λ∈P
d(λ) q |λ| = q

1 − q

( ∑

λ∈P
q |λ|),

we have 〈d〉q = q
1−q . Hence, deg(d) = 1 and Zdeg(d) = 1.

(ii) Next, consider f (λ) = (λ). Then 〈 f 〉q = ∑
m≥1

qm

1−qm (see, e.g., [28, Proposi-
tion 3.1.4]). Hence, for all ε ≥ 0 one has

lim
q→1

(1 − q)1+ε〈 f 〉q = lim
q→1

(1 − q)ε
∑

m≥1

(1 − q) qm

1 − qm
.

Note that limq→1
(1−q) qm

1−qm = 1
m , so that

∑
m≥1

(1−q) qm

1−qm diverges as q → 1 at

logarithmic rate (see, also, [25]). Hence, limq→1(1 − q)1+ε〈 f 〉q converges to 0
for ε > 0 and diverges to ∞ for ε = 0. In other words, the degree of f is 1 and
Zdeg( f ) = ∞.
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(iii) Thirdly, let f (λ)be equal to the number of even parts inλminus the number of odd
parts. That is, f (λ) = ∑

m(−1)m rm(λ). Then, (see again [28, Proposition 3.1.4])

(1 − q)〈 f 〉q =
∑

m≥1

(−1)m (1 − q)qm

1 − qm
−−−→
q→1

∑

m≥1

(−1)m

m
= log(2).

Hence, in this example, the corresponding degree limit, conjecturally, is not a
multiple zeta value.

(iv) The degree may be any real number x ∈ R. Namely, let

f (λ) =
∑

m∈m(λ)

(−1)m
(

x

m

)

=
∑

m≥1

(−1)m
(

x

m

)

δrm (λ)≥1 .

Then (also by [28, Proposition 3.1.4])

〈 f 〉q =
∑

m≥0

(−1)m
(

x

m

)

qm = (1 − q)x .

(v) It may happen that deg( f ) = −∞, as is the case for the Möbius function:

〈μ〉q =
( ∑

λ∈P
q |λ|)−2 =

∏

m≥1

(1 − qm)2.

(vi) If f is such that g(τ ) = 〈 f 〉q is a cusp form of weight k (with q = e2π iτ ), the
modular transformation g(τ ) = τ−k g

(− 1
τ

)
implies that

lim
q→1

(1 − q)k〈 f 〉q = lim
τ→0

(1 − e2π iτ )k

τ k
g

(
−1

τ

)
= lim

q→0
(−2π i)k〈 f 〉q = 0.

This illustrates the fact that if 〈 f 〉q is a quasimodular form of weight k, the degree
of f is k and the limit can be computed using the quasimodular transformation
(in fact, for quasimodular forms one can recover the full asymptotic expansion
as q → 1 using growth polynomials; see [14, Section 9]).

Remark 2.10 Given F = ∑
n≥0 anqn ∈ Q�q� there are infinitely many functions

f : P → Q for which 〈 f 〉q = F (the only condition on f is that
∑

|λ|=n f (λ) =∑
m≥0 am p(n − m) with p(i) the number of partitions of i). Hence, one could define

the degree and the degree limit of F as the degree and degree limit of f for one such f .
However, in the generality of this section, one does not discover a lot of structure in the
values Zdeg(F). In the next section, we see how this situation alters when one restricts
to a certain polynomial subspace of QP .
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3 Partition analogues of multiple zeta values

3.1 Polynomial functions on partitions

The spaces of polynomials and modular forms are graded algebras with the property
that after fixing the degree, or weight and a congruence subgroup respectively, the
corresponding vector spaces are finite dimensional. Similarly, the algebra P admits a
weight filtration such that the vector subspace of elements of a fixed weight is finite
dimensional.

This weight filtration is most naturally introduced after giving an equivalent defi-
nition for P. That is, let � be the composition of the u-bracket (see Definition 2.2),
and the mapping 	 from Definition 1.1. Then, � denotes the linear map

� :
⊕

n≥0

Q[x1, . . . , xn, y1, . . . , yn] → Q�u1, u2, . . .�

uniquely determined by

g(x1, . . . , xn, y1, . . . , yn) �→
∑

m1>...>mn>0
r1,...,rn≥1

g(m1, . . . , mn, r1, . . . , rn) ur1
m1

· · · urn
mn

(see Proposition 3.9). Now, Im� is an algebra with respect to the natural product
on Q�u1, u2, . . .�, and � becomes an algebra homomorphism if one defines a corre-
sponding product on the domain. Even more, this domain admits a weight and a depth
filtration, determined by assigning to g(x1, . . . , xn, y1, . . . , yn) weight deg g + n and
depth n. Themain advantage of� over	 is that the natural product on the codomain of
� (in contrast to the natural product on the codomain of 	) behaves well with respect
to the q-bracket (see Proposition 2.5). This yields the following natural definition for
the weight and depth filtration on P.

Definition 3.1 We call a function f ∈ QP a polynomial function on partitions of
weight ≤ k and depth ≤ p if 〈 f 〉u = �(g) for some g of weight ≤ k and depth ≤ p
(wherewe recall that g(x1, . . . , xn, y1, . . . , yn) hasweight≤ deg g+n and depth≤ n).

Note that the vector space of polynomial functions on partitions of bounded weight
is finite dimensional. Recall, we denote theQ-vector space of all polynomial functions
on partitions by

P = 〈 f ∈ QP | f is a polynomial function〉Q
and write for the subspace of all polynomial functions of weight ≤ k

P≤k := 〈 f ∈ P | f is of weight ≤ k〉Q .

In the next section, we provide a basis for P (or, in fact, several), which one can
easily find because of the following two results. Note that this contrasts the situation
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for multiple zeta values, as well as for q-analogues of multiple zeta values, where so
far it has not been possible to prove that a certain generating set forms a basis.

Proposition 3.2 The linear map � is injective.

Proof Suppose �(g) = 0 and write g = (g0, g1, . . .) with gn ∈ Q[x1, . . . , xn, y1,
. . . , yn]. Suppose there exists a minimal n such that gn �≡ 0. Then, there are integers
m1 > . . . > mn > 0 and r1, . . . , rn ≥ 1 such that

gn(m1, . . . , mn, r1, . . . , rn) �= 0.

Hence, the coefficient of ur1
m1 · · · urn

mn in �(g) is non-zero, contradicting our assump-
tion.

Corollary 3.3 Let f ∈ QP . Then f ∈ P precisely if there exist a p0 ∈ Q and for
n ≥ 1 polynomials pn ∈ y1 . . . ynQ[x1, . . . , xn, y1, . . . , yn] with pn ≡ 0 for all but
finitely many n, such that for any partition λ we have

f (λ) = p0 +
∑

n≥1

∑

m1>···>mn>0

pn(m1, . . . , mn, rm1(λ), . . . , rmn (λ)) . (3.1)

Moreover, the function f

(i) is of weight ≤ k if deg(pn) ≤ k for all n ≥ 0.
(ii) is of depth ≤ r if pn ≡ 0 for n > r ,

(iii) uniquely determines the polynomials pn .

Proof Here, we use that
∑R

r=1 rd is a polynomial which is of degree d + 1 in R and
divisible by R. For (iii) we use the previous proposition.

Remark 3.4 The function

f (λ) =
∑

m1>m2>0

m1m2 rm1(λ) (3.2)

is a polynomial function on partitions, although x1x2y1 /∈ y1y2Q[x1, x2, y1, y2].
Namely, observe that

f (λ) =
∑

m1>0

1
2m2

1(m1 − 1) rm1(λ).

Observe that f is of weight ≤ 4 and depth ≤ 1; a fact one could not easily read of
from the expression (3.2).

More generally, one could relax the condition pn ∈ y1 · · · ynQ[x1, . . . , xn, y1,
. . . , yn] by pn ∈ y1Q[x1, . . . , xn, y1, . . . , yn], at the cost of breaking the uniqueness
of the representation (3.1)—as we will see in Corollary 3.8—and making it harder to
read of the degree and depth.
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Remark 3.5 There exist natural extensions P(N ) of P to higher levels, i.e., such that
M(N ) is the subspace of P(N ) for which the q-brackets are quasimodular forms of
level N and for which the corresponding limits as q tends to an N th root of unity
are multiple polylogarithms at roots of unity (sometimes called colored multiple zeta
values). For example, the alternating multiple zeta value log 2 can be obtained in this
way: see Example 2.9(iii). More concretely, one would take

⊕

n≥0

Q[x1, . . . , xn, y1, . . . , yn, ζ x1 , . . . , ζ xn , ζ y1 , . . . , ζ yn | ζ N = 1]

as the domain in the definition of �. We do not pursue working out all details here but
instead refer to [29], where this has been worked out in a similar setting.

3.2 Bases for the space of polynomial functions on partitions

We define a basis of P, or rather different bases. These bases depend on a polynomial
sequence in the following way.

Definition 3.6 LetF = { fk}∞k=0 be a polynomial sequence (i.e., fk ∈ Q[x] is of degree
k) such that f0 = 1 and fk(0) = 0 for k ≥ 1. For r ≥ 0, k1 ≥ 1, k2, . . . , kr ≥ 0 and
d1, . . . , dr ≥ 0, we define the map

PF
(

k1, . . . , kr

d1, . . . , dr

)

: P → Q

by

PF
(

k1, . . . , kr

d1, . . . , dr
; λ

)

:=
∑

m1>···>mr >0

r∏

j=1

m
d j
j fk j (rm j (λ))

and by PF (λ) = 1 if r = 0. We write

HF (k1, . . . , kr ) = PF
(

k1, . . . , kr

0, . . . , 0

)

, JF (d1, . . . , dr ) = PF
(

1, . . . , 1

d1, . . . , dr

)

.

Note that PF
( k1,...,kr

d1,...,dr

) ∈ P, HF (k1, . . . , kr ) ∈ P ∩ H and JF (d1, . . . , dr ) ∈
P ∩ J , where H and J were defined in Definition 2.6.

Definition 3.7 A polynomial sequence F = { fk}∞k=0 with f0 = 1 and fk(0) = 0 for
k ≥ 1 is called well-normalized if the leading coefficient of fk equals 1

k! . In Table 1,
we define four families of polynomials of which the last three are well-normalized.

Corollary 3.8 (of Proposition 3.2) For all polynomial sequences F , a basis for P≤k is
given by the functions PF

( k1,...,kr
d1,...,dr

)
for all r ≥ 0, k1, . . . , kr ≥ 1 , and d1, . . . , dr ≥ 0

such that k1 + . . . + kr + d1 + . . . + dr ≤ k.
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Table 1 Overview of different models of partition analogues

F Name Definition of fk for k ≥ 1

m Monomial model fk (x) = xk

s Bernoulli–Seki model1 fk (x) − fk (x − 1) = 1
(k−1)! xk−1 and fk (0) = 0

b Binomial model fk (x) = (x
k
)

b+ Shifted binomial model fk (x) = (x+1
k

) − δk,1

1 The corresponding polynomials are often referred to as Faulhaber polynomials, but here we use the name
which we believe is historically more correct

3.3 Multiplication, conjugations and brackets of partition analogues

In Sect. 2.1 we introduced the u-bracket, two natural conjugation operations, and three
natural product operations on the space of all functions on partitions. We will now
explain how the space of polynomial functions on partitions behaves under these
operations.

First of all, the u-bracket of elements of P is given in Proposition 3.9 below. As a
corollary, the q-bracket of such an element can be seen as a q-analogue of multiple
zeta values as introduced in [2] and further discussed in [6]. In [6] the authors denote
by Zq the space spanned by all q-series of the form

∑

m1>···>mr >0

r∏

j=1

Qk j (q
m j )

(1 − qm j )k j
, (3.3)

for k1, . . . , kr ≥ 1 and polynomials Qk j (X) ∈ Q[X ] with deg Qk j ≤ k j and
Qk1(0) = 0. There it was shown ([6, Theorem 1]) that Zq is spanned by the q-series
(3.4), whose corresponding polynomial functions on partition also span our space P
(see Example 3.10(i)). That is, 〈P〉q equals the space of q-analogues Zq . In Sect. 4.1,
we show that the (regularized) limit q → 1 of elements inZq is always a (regularized)
multiple zeta value.

Given a polynomial f , for an integer n, denote by ∂ f (n) = f (n) − f (n − 1) if
n ≥ 1 and let ∂ f (0) = f (0). Then [28, Proposition 3.1.4 and Lemma 3.5.2] yields:

Proposition 3.9 The u-bracket of PF
( k1,...,kr

d1,...,dr

)
is given by

〈

PF
(

k1, . . . , kr

d1, . . . , dr

)〉

u
=

∑

m1>···>mr >0

r∏

j=1

(
m

d j
j

∑

n≥0

∂ fk j (n) un
m j

)
.

Recall that f0 = 1, so that ∂ f0(n) = δn,0 . Moreover, for k ≥ 1, we have fk(0) = 0,
so that ∂ fk(0) = 0.

Example 3.10 For some particular choices of F , the q-bracket of partition analogues
of multiple zeta values gives rise to several models for q-analogues of multiple zeta
values:
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(i) The Bernoulli–Seki model F = s corresponds, up to a factor, to the bi-brackets
introduced by the first author in [2]

〈
Ps

(
k1, . . . , kr

d1, . . . , dr

)〉

q
=

∑

m1>...>mr >0
n1,...,nr >0

r∏

j=1

m
d j
j

n
k j −1
j

(k j − 1)!q
m j n j (ki ≥ 1). (3.4)

For r = 1, d1 = 0 and even k1 ≥ 2 these are, up to the constant term, the

Eisenstein series Gk1 = − Bk1
2k1! + 〈

Ps
( k1
0

)〉
q , defined in (1.4). In the case r =

1, k1 > 1, d1 > 0 and k1 + d1 even, they are essentially the d1-th derivative of
Gk1−d1 . For example for k > d > 0 we have

〈
Ps

(
k

d

)〉

q
= (k − d − 1)!

(k − 1)!
(

q
d

dq

)d

Gk−d . (3.5)

Together with

〈
Ps

(
1

1

)〉

q
=

〈
Ps

(
2

0

)〉

q
= G2 + 1

24

and

〈
Ps

(
k

d

)〉

q
= d!

(k − 1)!
〈
Ps

(
d + 1

k − 1

)〉

q

we see that all q-brackets of Ps

(
k
d

)
with k + d even are in the ring M̃ of quasi-

modular forms.
(ii) The binomial model F = b corresponds to the so-called Schlesinger–Zudilin

q-analogues of multiple zeta values [26, 33] given by

〈Hb(k1, . . . , kr )〉q =
∑

m1>···>mr >0

r∏

j=1

qm j k j

(1 − qm j )k j
(k1 ≥ 1, ki ≥ 0).

(iii) Shifted binomial polynomials correspond to the q-analogues of multiple zeta
values introduced by Bradley [11] and Zhao given by

〈Hb+(k1, . . . , kr )〉q =
∑

m1>···>mr >0

r∏

j=1

qm j (k j −1)

(1 − qm j )k j
(k1 ≥ 2, ki ≥ 1).

The three products on the space of all functions on partitions naturally reduce to P.
That is, we obtain three commutative Q-algebras (P,�), (P, � ) and (P,�) with a
natural involution, as stated in the following result.

Proposition 3.11 The space P of polynomial function on partitions
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(i) is closed under the conjugation ι.
(ii) is closed under the harmonic, shuffle and pointwise products �, � and �.

(iii) has D (see Definition 2.3) as a derivation on both (P,�) and (P, � ).
(iv) admits the algebra homomorphisms given in the following commutative diagram

of differential Q-algebras (with the derivation q d
dq on Zq)

(P,�)

Zq

(P, � )

〈 〉q

ι

〈 〉q

.

Proof The first statement follows since the conjugate of (r1, . . . , rd) × (m1, . . . , md)

is given by (m1, m2 − m1, . . . , md − md−1) × (r1 + . . . + rd , . . . , r1) and therefore
the conjugate of a polynomial in Stanley coordinates is again a polynomial in Stanley
coordinates. Statement (ii) follows from Proposition 3.9 together with Corollary 3.8,
since the harmonic, as well as the pointwise product, of two u-brackets of PF

(
...
...

)
can

again be expressed as a linear combination of u-brackets of PF
(

...

...

)
. We will see this

explicitly in Proposition 4.13. Together with (i) this then also shows that the space is
closed under � . Since D is the derivation onQ�u1, u2, . . .�, defined on the generators
by Dun = nun , (iii) follows immediately by the fact that both � and � are defined
via the u-bracket. Finally (iv) follows from (i)–(iii) and the definition of � by the
u-bracket after setting un = qn .

Remark 3.12 The spaceM ⊂ P is also closed under ι and the products�, � .Moreover,
since the space of quasimodular forms is closed under q d

dq , the space M is closed
under D as well, i.e.,M satisfies almost all properties of Proposition 3.11. But one can
check thatM is not closed under �. In general, it is not clear howM can be described
explicitly as a subspace of P. Since it contains the kernel of the q-bracket, it might be
difficult to give an explicit description. In this note, we will give several examples of
explicit elements in M, but expect that there are many more (see, e.g., Example 5.2).
Another open question is if there are other interesting subalgebras of P, which satisfy
(some of) the properties of Proposition 3.11.

Remark 3.13 The space P is not closed under the conjugation ω. For example, for F
well-normalized ω(PF

(
1
0

)
)(λ) = λ1 equals the biggest part of the partition λ. It is a

small computation to verify that

〈λ1〉u = −
∑

λ∈P
μ(λ) λ uλ /∈ 〈P〉u ( = (λ) is the length of λ).

The subspace �∗ of P, defined in the introduction, however, has the remarkable prop-
erty that it is closed under ω but not under ι.
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Remark 3.14 For the Bernoulli–Seki model F = s the involution ι is explicitly given
by

ι Ps

(
k1, . . . , kr

d1, . . . , dr

)

=
∑

a1,...,ar ≥1
|a|=|d|+r

∑

b1,...,br ≥0
|b|=|k|−r

C
a,k
b,d Ps

(
a1, . . . , ar

b1, . . . , br

)

, (3.6)

where for a, b, d, k ∈ Zr the constant C
a,k
b,d is given by

C
a,k
b,d = (−1)|b|

r∏

j=1

(s j (d)−s j (a)+ j−1
ar− j+1−1

)( kr− j+1−1
s j (b)−s j (k)+ j−1

) (a j −1)!
(k j −1)! (−1)s j (k)+s j (b)+ j

and where for  ∈ Zr and j = 1, . . . , r , we write

s j () =
j∑

i=1

i , s j () =
r∑

i=r− j+2

i .

Since the q-bracket is ι-invariant, (3.6) gives explicit linear relations among the q-
brackets of the Bernoulli–Seki model (3.4). This corresponds to the partition relation
in [2, Theorem 2.3]. There it was also conjectured that these families of relations
together with the stuffle product are enough to write any q-series (3.4) as a linear
combination of those with either d1 = · · · = dr = 0 or k1 = · · · = kr = 1. In our
setup here this translates to the following model independent conjecture:

Conjecture 3.15 We have

Zq = 〈P〉q = 〈P ∩ H 〉q = 〈P ∩J 〉q .

Notice that the first equation here is known as explained in the remark at the begin-
ning of Sect. 3.3 and the last equation is clear since ι(P∩H ) = P∩J . The functions
in P ∩ H are exactly those polynomial functions on partitions where the polynomi-
als in Definition 1.1 are independent of the variables xi . This conjecture was also
discussed in more detail for the Bernoulli–Seki model in [6] and [13].

3.4 Some remarks about theMöller transform

In contrast to the conjugation, products and derivation above, some natural operations
on functions on partitions do not leave the space of polynomial functions invariant.
One of the most interesting such operators is the Möller transform M : QP → QP

in [14]:

Definition 3.16 Given f : P → Q, its Möller transform M f : P → Q is the
function given on a partition λ of size n by
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M f (λ) = 1

n!
∑

μ∈P(n)

|Cμ| χλ(μ)2 f (μ),

where |Cμ| denotes the size of the conjugacy class associated to μ in the symmetric
group Sn , and χλ(μ) denotes value of the character of the irreducible representation
of Sn associated to λ at any element in the conjugacy class associated to μ.

The key property of the Möller transform (which follows directly from the second
orthogonality relation for the characters of the symmetric group) is that for all f :
P → Q one has

〈M f 〉q = 〈 f 〉q .

For the following subvectorspace of P, the Möller transform is known to preserve the
space of polynomial functions:

Proposition 3.17 Let f ∈ P. Then M( f ) ∈ P if f is in the vector space generated by
the constant function 1 and

P

(
1

k − 1

)

� P

(
1

1

)

� · · · � P

(
1

1

)

︸ ︷︷ ︸
m

for any k ≥ 2 and m ≥ 0.

Remark 3.18 As the statement of this proposition does not depend on the choice ofF ,
we also omit it from the notation.

Proof For all k ≥ 1, the Möller transform MP
(

1
k−1

)
equals the hook-length

moment Tk , given by

Tk(λ) :=
∑

ξ∈Yλ

h(ξ)k−2,

where Yλ denotes the Young diagram of λ, ξ a cell in this diagram and h(ξ) the
hook-length of this cell. Note that for even k this function lies in the space of shifted
symmetric functions defined in the introduction, as is shown in [14, Thm. 13.5]. For

all k ≥ 2, the results of Sect. 5.3 imply that MP
(

1
k−1

)
is a polynomial function on

partitions.

Also, any polynomial in |λ|, that is, any polynomial in P
(
1
1

)
with respect to � is

invariant under the Möller transform—as follows easily from the first orthogonality

relation. In fact,M( f � P
(
1
1

)
) = M( f )� P

(
1
1

)
from which the result follows.
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Remark 3.19 For MP
(
1
0

)
, the situation is totally different. In this case

MP

(
1

0

)

(λ) =
∑

ξ∈Yλ

h(ξ)−1.

As the q-bracket of a function and its Möller transform agree, we would expect this
function to be of weight 1 as well, if it were a polynomial function on partitions. It

is a matter of linear algebra to check that MP
(
1
0

)
is not a polynomial function on

partitions of weight ≤ 1.

In fact, the 233-dimensional vector space of polynomial functions on partitions of
weight≤ 6only has a 10-dimensional subspace forwhich theMöller transform is again

a polynomial function on partitions—this subspace is generated by 1, P
(

1
k−1

)
for k =

2, . . . , 6, P
(
1
1

)
� P

(
1
1

)
, P

(
1
2

)
� P

(
1
1

)
, P

(
1
1

)
� P

(
1
1

)
� P

(
1
1

)
and P

(
1
3

)
� P

(
1
1

)
.

Lemma 3.20 For f ∈ P≤6 the converse in Proposition 3.17 holds.

Note that this lemma can be proven by finding the kernel of a matrix containing at
least 2 · 233 + 1 values of all these polynomial functions as well as of their Möller
transforms, as we did in Pari/GP. Hence, it seems the converse of Proposition 3.17
holds for all f ∈ P.

4 From partitions tomultiple zeta values

4.1 Weight and degree limits of partition analogues

For functions f ∈ P, recall Zdeg( f ) and deg( f ) are defined such that

(1 − q)deg( f )〈 f 〉q = Zdeg( f ) + O(1 − q)

asymptotically for real q.Wewill see that the degree is a non-negative integer bounded
above by the weight of f . In this section, we prove Theorem 1.2. That is, we compute
this degree and show that Zdeg( f ) is a multiple zeta value, which justifies calling the
elements of P partition analogues of multiple zeta values. From now on, we omit the
well-normalized family F from the notation and write P instead of PF , unless the
results depend on the choice of F .

To get started we discuss two examples. First of all, we consider the degree of
derivatives of polynomial functions on partitions.

Lemma 4.1 Given f ∈ P, we have

deg(D f ) = deg f + 1, Zdeg(D f ) = deg f · Zdeg( f ).
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Proof. This follows directly from L’Hôpital’s rule, as for all k �= 0 one has

lim
q→1

(1 − q)k〈 f 〉q = lim
q→1

1

k
(1 − q)k+1q

∂

∂q
〈 f 〉q = lim

q→1

1

k
(1 − q)k+1〈D f 〉q .

As another example, we consider polynomial functions on partitions of depth ≤ 1,
corresponding to single zeta values. To calculate degree limits explicitly we define for
k ≥ 1 the (slightly modified) Eulerian polynomials Ek by

Ek(X)

(1 − X)k
:=

∑

d≥1

dk−1

(k − 1)! Xd . (4.1)

Also, write [n]q = 1−qn

1−q = 1 + q + · · · + qn−1.

Lemma 4.2 Let k ≥ 1, d ≥ 0. Then,

deg P

(
k

d

)

= max(k, d + 1), Zdeg P

(
k

d

)

=
{

ζ(k − d) k ≥ d + 1
d!

(k−1)!ζ(d − k + 2) k ≤ d + 1.

Proof Consider the limit q → 1 of the function (1 − q)a ∑
m,n

mk−1

(k−1)!n
dqmn , which

is the only term contributing to the degree limit for any well-normalized family. For
a = k, this equals

∑

n≥1

nd Ek(qn)

[n]k
q

. (4.2)

By Proposition 4.5 below the terms in the sum (4.2) are bounded by (k + 1)nd−k and
therefore the sum converges absolutely if k − d > 1. As limq→1

Ek(qn)

[n]k
q

= 1
nk , in that

case it follows that

lim
q→1

(1 − q)k P

(
k

d

)

= ζ(k − d).

Conversely, one obtains the case k − d < 1 by the same argument interchanging
the roles of k and d. Finally, in case k − d = 1, a more careful analysis as in [25],
shows the limit diverges—in accordancewith the divergence of ζ(1). Also, after letting
a = k + ε and k − ε for some ε > 0, the limit converges to 0 and diverges to +∞
respectively.

Remark 4.3 Note that Lemma 4.1 and Lemma 4.2 are in agreement with the relation
D Ps

( k
d

) = k Ps
( k+1

d+1

)
.

In the previous lemma, the proof of absolute convergence of the sum (4.2) was
postponed. Note that by applying the techniques for asymptotics of sums of the form∑

n f (nt) in [31], as was previously observed in [34, Lemma 1], one obtains the
following lemma (where the Eulerian polynomials Ek are defined by (4.1)).
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Lemma 4.4 For k, n ≥ 1

Ek(qn)

[n]k
q

= 1

nk
+ O(1 − q), (q → 1−).

Wewill give an upper bound for the left-hand side for all q ∈ [0, 1] in the following
proposition. The special cases k = 1, 2 were obtained before in [5, Lemma 6.6(ii)].

Proposition 4.5 For k, n ≥ 1 and q ∈ [0, 1] we have

Ek(qn)

[n]k
q

≤ k + 1

nk
.

Proof. By continuity, we may assume q ∈ (0, 1). By definition, we have

Ek(qn)

[n]k
q

= Ek(qn)

(1 − qn)k
(1 − q)k =

(∑

d≥1

dk−1

(k − 1)!q
dn

)

(1 − q)k .

Thus, it suffices to show

(∑

d≥1

dk−1

(k − 1)!q
dn

)

(1 − q)k ≤ k + 1

nk
(k, n ≥ 1, q ∈ (0, 1)).

We have

∑

d≥1

dk−1 qdn =
(

log
1

q

) ∑

d≥1

dk−1
∫ ∞

dn
qu du

=
(

log
1

q

) ∫ ∞

n

( ∑

1≤d≤u/n

dk−1
)

qu du,

where interchanging the sum and integral is allowed since the sum
∑

d≥1 dk−1qdn

converges (absolutely) for q ∈ (0, 1). For u ≥ n, we now have

∑

1≤d≤u/n

dk−1 =
∑

1≤d≤�u/n�−1

dk−1 +
(

u

n

)k−1

≤
∑

1≤d≤�u/n�−1

∫ d+1

d
yk−1 dy +

(
u

n

)k−1

≤
∫ u/n

1
yk−1 dy +

(
u

n

)k−1

≤ k + 1

k

(
u

n

)k

.
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We thus have

∑

d≥1

dk−1

(k − 1)!q
dn ≤ k + 1

k!
1

nk

(

log
1

q

) ∫ ∞

n
qu uk du

= k + 1

k!
1

nk

(

log
1

q

)−k ∫ ∞

n log 1
q

e−u uk du

≤ k + 1

k!
1

nk

(

log
1

q

)−k ∫ ∞

0
e−u uk du

= k + 1

nk

(

log
1

q

)−k

.

By using the bound

log
1

q
=

∫ 1

q

du

u
≥ 1 − q,

we get

(∑

d≥1

dk−1

(k − 1)!q
dn

)

(1 − q)k ≤ k + 1

nk

(
1 − q

log 1
q

)k

≤ k + 1

nk
.

Remark 4.6 The stronger bound

Ek(qn)

[n]k
q

≤ 1

nk
(4.3)

fails for k divisible by 4, large n and q close to 1. Namely, setting e−t = qn , one finds
that this inequality is equivalent to

∑

d≥1

dk−1

(k − 1)! e−dt <
1

(n(1 − e−t/n))k
.

Note, (n(1 − e−t/n)) is bounded from below by t and converges to t as n → ∞. As
t ↓ 0, one would deduce from this inequality that ζ(1 − k) < 0, which fails if 4 | k.
Concretely, k = 4, q = e−10−4

and n = 104 provides a counterexample to (4.3).

To determine the degree of a polynomial function on partitions, we start with two
estimates on this degree. Together, these statements are an improvement of the state-
ment that the degree is bounded by the weight. In fact, in most cases, the degree is
strictly smaller than the weight, so that the weight limit, defined below, vanishes in
most cases.
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Definition 4.7 For f ∈ P of weight ≤ k which is not of weight ≤ k − 1, the weight
limit Z( f ) is given by

Z( f ) := lim
q→1

(1 − q)k〈 f 〉q .

Notice that Z is not a linear map.

Lemma 4.8 For all k and d one has

(i) deg P

(
k1, . . . , kr

d1, . . . , dr

)

≤
∑

i

max(ki , di + 1);

(ii) deg P

(
k1, . . . , ki+1, . . . , kr

d1, . . . , di+1 + 1, . . . , dr

)

≤ deg P

(
k1, . . . , ki , . . . , kr

d1, . . . , di + 1, . . . , dr

)

;
Moreover, if there is no index t such that ki = 1 for all i ≤ t and di = 0 for all i > t ,
one has

Z P

(
k1, . . . , kr

d1, . . . , dr

)

= 0.

Proof Given F ∈ Q�q�, write [qn]F for the coefficient of qn in F . Forgetting the
inequalities m1 > m2 > . . . > mr , one obtains

[qn]
〈
P

(
k1, . . . , kr

d1, . . . dr

)〉

q
≤ [qn]

〈
P

(
k1
d1

)〉

q
· · ·

〈
P

(
kr

dr

)〉

q

for all n ∈ N, from which the first part of the statement follows using Lemma 4.2. The
second statement follows by estimating mdi+1+1

i+1 ≤ mdi+1
i+1 mi . Finally, if such a t does

not exist, then the first two properties imply that the degree of the function at hand is
strictly less than the weight, so that the weight limit vanishes.

We now prove Theorem 1.2, which determines the degree of a polynomial function

f = P

(
k1, . . . , kr

d1, . . . , dr

)

.

That is,

deg( f ) = max
j∈{0,...,r}

{∑

i≤ j

(di + 1) +
∑

i> j

ki

}

. (4.4)

Recall that if r = 1, by Lemma 4.2 the degree limit diverges if k1 = d1+1. In general,
this is the case when ka + . . . + kb = (da + 1) + . . . + (db + 1) for some indices
a ≤ b. If such indices do not exist, the maximum in (4.4) is unique and we show the
corresponding degree limit is a sum of multiple zeta values. For this, we first show that
multiple zeta values are also well-defined for certain indices with negative integers
(cf., [22, Theorem 3]).
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Lemma 4.9 For r ≥ 1 and κ1, . . . , κr ∈ Z with
∑ j

i=1 κi > j for all j ≥ 1,

ζ(κ1, . . . , κr ) :=
∑

m1>···>mr >0

1

mκ1
1 · · · mκr

r

is a well-defined real number. Moreover, it is an element of Z≤|κ|.

Proof First, we estimate m−κr
r by m−κr +1

r−1 m−1
r if κr ≤ 0 and obtain

0 < ζ(κ1, . . . , κr ) ≤ ζ(κ1, κ2, . . . , κr−1 + κr − 1, 1)

if κr ≤ 0. Iteratively (at most r − 1 times) performing this procedure by estimating

m
−κ ′

i
i by m

−κ ′
i +1

i−1 m−1
i for the largest index i for which the exponent κ ′

i of mi is non-
positive, we find

0 < ζ(κ1, . . . , κr ) ≤ ζ(κ1 + κ2 + . . . + κ j − j + 1, . . .) < ∞

for some j ≥ 1, where by the nature of this iterative process only the first entry may
be non-positive. By our assumption

∑ j
i=1 κi > j , we find that the first entry is at least

equal to 2, from which we indeed conclude that ζ(κ1, . . . , κr ) is a well-defined real
number.

By iteratively using that
∑b

m=a m−k for k ≤ 0 is a polynomial in a and b, it is not
hard to show that ζ(κ1, . . . , κr ) ∈ Z≤|κ|, with |κ| = ∑

i κi . Observe, here, again we

make use of the assumption
∑ j

i=1 κ j > j to ensure all multiple zeta values in this
linear combination are convergent.

Proof of Theorem 1.2 Let j = t be the smallest index for which the maximum in (4.4)
is attained. Write g = P

( k1,...,kt
d1,...,dt

)
and h = P

( kt+1,...,kr
dt+1,...,dr

)
. We will show that Zdeg g and

Zdeg h aremultiple zeta values in case j = t is the unique index forwhich themaximum
in (4.4) is attained. In that case, we also show that Zdeg f = (Zdeg g)(Zdeg h).

Since the degree limit only depends on the leading term we can choose any well-
normalized family F . Observe that if we choose the Bernoulli–Seki model we have

〈h〉q =
∑

mt+1>...>mr >0

∏

i

mdi
i

Eki (q
mi )

(1 − qmi )ki
. (4.5)

By Lemma 4.4 we get for all i

lim
q→1

mdi
i (1 − q)ki

Eki (q
mi )

(1 − qmi )ki
= mdi −ki

i .
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First, assume j = t is the unique index for which the maximum in (4.4) is attained.
Then, we know that for all t ′ > t

t ′∑

i=t+1

ki >

t ′∑

i=t+1

(di + 1). (4.6)

By Proposition 4.5 we find that the sum in (4.5) is absolutely bounded by a constant
(depending on the ki ) times ζ(kt+1−dt+1, . . . , kr −dr ). Using (4.6), this multiple zeta
value is well-defined by Lemma 4.9, so (4.5) converges absolutely. By interchanging
the sum and limit, we conclude

deg h =
r∑

i=t+1

ki and Zdeg h = ζ(kt+1 − dt+1, . . . , kr − dr ).

Hence, Zdeg h is a linear combination of multiple zeta values of weight ≤ ∑r
i=t+1 ki .

In case the index j = t is not unique, let ε > 0. Then, as

lim
q→1

mdi
i (1 − q)ki +ε Eki (q

mi )

(1 − qmi )ki
→ 0

if q → 1, we see that deg h ≤ ∑r
i=t+1 ki in this case. Moreover, as

lim
q→1

mdi
i (1 − q)ki

Eki (q
mi )

(1 − qmi )ki
= mdi −ki

i > 0,

we conclude that also in this case we have deg h = ∑r
i=t+1 ki .

Next, (again working with the Bernoulli–Seki model) observe that

〈g〉q =
∑

m1>...>mt >0
r1,...,rt >0

∏

i

mdi
i r ki −1

i qmi ri

=
∑

0<r ′
1<...<r ′

t
m′
1,...,m

′
t >0

∏

i

(m′
i + . . . + m′

t )
di (r ′

i − r ′
i−1)

ki −1qm′
i r

′
i ,

where we set r ′
0 = 0. Given a ‘monomial’ m

d ′
1

1 · · · m
d ′

t
t , we have

∑

0<r1<...<rt
m1,...,mt >0

∏

i

m
d ′

i
i qmi ri =

∑

0<r1<...<rt

∏

i

d ′
i !

Ed ′
i +1(q

ri )

(1 − qri )d ′
i +1

,

which is of degree
∑

i (d
′
i +1) and (in case d ′

t > 0) with degree limit ζ(d ′
t +1, . . . , d ′

1+
1) (as follows from above). Hence, by expanding

∏
i (m

′
i + . . . + m′

t )
di in monomials,



    3 Page 26 of 46 H. Bachmann, J.-W. van Ittersum

we see that

deg g =
∑

i

(di + 1),

provided that the corresponding limit

L =
∑

0<r1<...<rt

∏

i

(ri − ri−1)
ki −1

ri
· �

[ t∏

i=1

( 1

ri
+ . . . + 1

rt

)di
]

,

converges, where � : Q[r−1
1 , . . . , r−1

t ] → Q[r−1
1 , . . . , r−1

t ] is the linear map-
ping (1.7), i.e.,

�
[ 1

rl1
1 · · · rlt

t

]
:= l1! · · · lr !

rl1
1 · · · rlt

t

(li ∈ Z≥0).

Note that 〈g〉q is bounded by a constant (only depending on the d ′
i ) times L , which

justifies interchanging the sum and limit in this computation (if L converges). We
estimate

ri − ri−1 ≤ ri and
1

ri
+ . . . + 1

rt
≤ t

ri

to obtain

L ≤
∑

0<r1<...<rt

∏

i

r ki −di
i tdi di ! =

(∏

i

tdi di !
)

· ζ(dt − kt , . . . , d1 − k1).

Note that if for some s we have that
∑t

i=s(di − ki + 1) ≤ 0, then the sum (4.4) is
also maximized for j = s − 1, contradicting the definition of t . Hence, Lemma 4.9
implies that L is a well-defined real number. Therefore, L = Zdeg g and Zdeg g is a
well-defined linear combination of multiple zeta values of weight ≤ ∑t

i=1(di + 1)
(the latter one reads of from the definition of L).

Finally, we relate the degree and limits of g and h to the degree and limits of f .
Consider the difference f − g � h, and observe that deg(g � h) = deg g + deg h (as
〈g � h〉q = 〈g〉q〈h〉q ; see Proposition 2.5). First, we assume again that j = t is the
unique index for which the maximum in (4.4) is attained. In that case, we claim that
f −g �h is of smaller degree than g �h. It follows from this claim that the function f
has the same degree, as well as degree limit, as g � h. Hence, in case j = t is the
unique index for which the maximum in (4.4) is attained, it suffices to prove the claim.

To prove the claim, we write this difference f −g�h in terms of the basis elements
of P. Then, we will see it contains two types of terms. We show that all these terms
are of degree smaller than the degree (4.4) in the statement.

First of all, there are terms in f − g � h where the column with kt and dt is on
the right of the column with kt+1 and dt+1 (note that possibly some other column is
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stuffled on the columns containing these values). We apply Lemma 4.8(ii) repeatedly,
so that:

• The values d j are replaced by d ′
j such that k j ≤ d ′

j + 1 if j ≤ t and kt < d ′
t + 1,

and with k j ≥ d ′
j + 1 if j > t and kt+1 > d ′

t+1 + 1. That this is always possible
follows from the construction of t . For the strict inequalities, we use the uniqueness
of the maximum defining t .

• Additionally, the values d ′
t and d ′

t+1 are replaced by d ′
t −1 and d ′

t+1+1 respectively.

Lemma 4.8(i) now implies that these terms are of lower degree.
Secondly, there are terms of depth < r , for which a certain column is given by(kt +kt+1−a

dt +dt+1

)
for some a ≥ 0. Then, similarly, Lemma 4.8 also implies that these terms

are of lower degree.
Now, the case that j = t is not the unique index for which the maximum in (4.4)

is attained remains. By a similar argument as in Lemma 4.8(i), we have

deg f ≤ deg g + deg h.

Namely, for this inequality, we forget all inequalities mi > m j if i ≤ t and j > t .
Let j = t ′ be the maximal index for which the maximum in (4.4) is obtained, and

write

f ′ = P

(
k1, . . . , kt ′−1, kt ′, kt ′+1, . . . , kr

0, . . . , 0, d1 + . . . + dt ′ , dt ′+1, . . . , dr

)

.

Now, we apply Lemma 4.8(ii) for i = 1, . . . , t ′ − 1, to obtain a lower bound for the
degree of f . That is,

deg f = deg P

(
k1, . . . , kr

d1, . . . , dr

)

≥ deg f ′ =
t ′∑

j=1

(d j + 1) +
r∑

j=t ′+1

k j .

Here, the last equality holds as for f ′ the maximum in (4.4) is uniquely attained at
j = t ′, and we already computed the degree and corresponding limit in that case.
Hence, deg f is bounded from both sides by the value (4.4), which completes the
proof in the case that j = t is not the unique index for which the maximum in (4.4) is
attained.

Recall that by Lemma 4.8 we have

Z P

(
k1, . . . , kr

d1, . . . , dr

)

= 0

if there is no index t such that ki = 1 for all i ≤ t and di = 0 for all i > t . By going
through the proof above for those basis elements in P for which there does exist such
a t , we find that the weight limits of such elements do not vanish:

Corollary 4.10 For all d1, . . . , dt−1 ≥ 0, dt ≥ 1, kt+1 ≥ 2 and kt+2, . . . , kr ≥ 1,
write
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f = P

(
1, . . . , 1, kt+1, . . . , kr

d1, . . . , dt , 0, . . . , 0

)

.

We have

deg f =
t∑

i=1

(di + 1) +
r∑

i=t+1

ki = wt f

and

Zdeg f = ξ(d1, . . . , dt ) ζ(kt+1, . . . , kr ) = Z f .

4.2 Algebraic setup

Wewill now introduce the algebraic setup for our space P by generalizing the classical
setup introduced by Hoffman in [17] and used in [20] for the regularization of multiple
zeta values. For each model F = { fk}∞k=0 of well-normalized polynomials we will
describe the harmonic product as well as the shuffle product on the level of words
in analogy to [17]. For the Bernoulli–Seki model the algebraic setup described here
coincides with the one described in [2, Section 3]. Define the set A, also called the set
of letters, by

A :=
{[

k

d

] ∣
∣
∣ k ≥ 1, d ≥ 0

}

.

We will define a product ∗F on the space Q〈A〉 of non-commuting polynomials in A
and we will call a monic monomial in Q〈A〉 a word. This product on the space of
words will depend on a product �F on the space QA of letters, which depends on F .
Recall that as F is well-normalized, the fk are polynomials of degree k with leading
coefficient 1

k! . Then, for k1, k2 ≥ 1 and 1 ≤ j ≤ k1 + k2 − 1 there exist rational
numbers αF (k1, k2, j) ∈ Q such that for all n ≥ 1

∑

n1+n2=n
n1,n2≥1

∂ fk1(n1) ∂ fk2(n2) = ∂ fk1+k2(n) +
k1+k2−1∑

j=1

αF (k1, k2, j) ∂ f j (n) , (4.7)

where as before ∂ f (n) = f (n) − f (n − 1) for integers n ≥ 1.

Example 4.11 (i) IfF = b is the binomialmodel, i.e., fk(x) = (x
k

)
, we have ∂ fk(x) =

(x−1
k−1

)
for k ≥ 1 and since

∑

n1+n2=n
n1,n2≥1

(
n1 − 1

k1 − 1

)(
n2 − 1

k2 − 1

)

=
(

n − 1

k1 + k2 − 1

)

we obtain αb(k1, k2, j) = 0.
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(ii) For the Bernoulli–Seki model F = s we find that αs(k1, k2, j) equals

−
(

(−1)k1

(
k1 + k2 − 1 − j

k2 − j

)

+ (−1)k2

(
k1 + k2 − 1 − j

k1 − j

))
Bk1+k2− j

(k1 + k2 − j)! ,

(4.8)

which can be proven by using Bernoulli’s/Seki’s/Faulhaber’s formula for the sum
of powers (see, e.g., [28, Lemma 6.1.2(ii)]).

On QA we define the product �F for k1, k2 ≥ 1 and d1, d2 ≥ 0 by

[
k1
d1

]

�F
[

k2
d2

]

=
[

k1 + k2
d1 + d2

]

+
k1+k2−1∑

j=1

αF (k1, k2, j)

[
j

d1 + d2

]

. (4.9)

In the case F = b we just write � = �b , which is given by

[
k1
d1

]

�
[

k2
d2

]

=
[

k1 + k2
d1 + d2

]

.

For each well-normalized family of polynomials F this gives a commutative non-
unital Q-algebra (QA,�F ). We will be interested in Q-linear combinations of words
in the letters of A and we define

P = Q〈A〉

In the following we will use for k1, . . . , kr ≥ 1, d1, . . . , dr ≥ 0 the following notation
to write words in P:

[
k1, . . . , kr

d1, . . . , dr

]

:=
[

k1
d1

]

. . .

[
k1
d1

]

,

where the product on the right is the usual non-commutative product in Q〈A〉.
Definition 4.12 For a well-normalized family of polynomials F we define the quasi-
shuffle product ∗F onP as theQ-bilinear product, which satisfies 1∗F w = w∗F 1 =
w for any word w ∈ P and

aw ∗F bv = a(w ∗F bv) + b(aw ∗F v) + (a �F b)(w ∗ v) (4.10)

for any letters a, b ∈ A and words w, v ∈ P.

We obtain a commutative Q-algebras (P, ∗F ), as shown in [17] (see also [19]). In
the case F = b we just write ∗ = ∗b . As an example for the product (4.10) we have

[
k1
d1

]

∗
[

k2
d2

]

=
[

k1, k2
d1, d2

]

+
[

k2, k1
d2, d1

]

+
[

k1 + k2
d1 + d2

]

.
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The algebra (P, ∗) is graded by weight, where the weight is defined by

wt

([
k1, . . . , kr

d1, . . . , dr

])

= k1 + · · · + kr + d1 + · · · + dr

and it is filtered by depth, which is defined by

dep

([
k1, . . . , kr

d1, . . . , dr

])

= r .

In general the algebra (P, ∗F ) is not graded but filtered by weight.

Proposition 4.13 For any well-normalized family of polynomials F the maps

�F : (P, ∗F ) −→ (P,�)
[

k1, . . . , kr

d1, . . . , dr

]

�−→ PF
(

k1, . . . , kr

d1, . . . , dr

)

and

(P, ∗) −→ (P,�)
[

k1, . . . , kr

d1, . . . , dr

]

�−→ Pm

(
k1, . . . , kr

d1, . . . , dr

)

are algebra-isomorphisms of filtered algebras. Recall that m stands for the monomial
model (see Table 1).

Proof Assume F is a well-normalized family of polynomials. First, notice that when-
ever one has a sum of the form

∑

m1>···>mr >0

r∏

j=1

m
d j
j h(m j , k j ) (4.11)

in a Q-algebra (A,×) with some function h satisfying

h(m, k1) × h(m, k2) = h(m, k1 + k2) +
k1+k2−1∑

j=1

αF (k1, k2, j) h(m, j) , (4.12)

then the linear map ϕ defined by sending the generators
[k1,...,kr

d1,...,dr

]
to (4.11) satisfies

ϕ(w)×ϕ(v) = ϕ(w ∗F v) for all w, v ∈ P. This can be shown by truncating the sum
over the m j by some M and then doing induction on M together with the definition
of ∗F (see for example [3, Lemma 2.18]). To show the first statement we consider the
u-bracket of a generator of P, which by Proposition 3.9 is given by

〈

PF
(

k1, . . . , kr

d1, . . . , dr

)〉

u
=

∑

m1>···>mr >0

r∏

j=1

(
m

d j
j

∑

n>0

∂ fk j (n) un
m j

)
. (4.13)



Partitions, multiple zeta values and the q-bracket Page 31 of 46     3 

Since the harmonic product � is defined by the u-bracket (see Definition 2.3) we
see that �F is an algebra homomorphism, as (4.13) is a sum of the form (4.11) with
h(m, k) = ∑

n>0 ∂ fk(n) un
m and the property (4.12) is satisfied due to (4.7). With a

similar argument, we see that also the second map is an algebra homomorphism since

Pm

(
k1, . . . , kr

d1, . . . , dr
; λ

)

=
∑

m1>···>mn>0

r∏

j=1

m
d j
j rm j (λ)k j ,

is a sum of the form (4.11) with h(m, k) = rm(λ)k . All maps are also isomorphisms
among the elements in P and in P (Corollary 3.8).

As a direct consequence of describing the product � in terms of a quasi-shuffle
product is the following.

Proposition 4.14 For k ≥ 2, d ≥ 0 with k +d even we have Ps
( k,...,k

d,...,d

) ∈ M, i.e., their
q-brackets are quasimodular forms (of mixed weight).

Proof Suppose a Q-algebra R and an algebra homomorphism ϕ : (P, ∗F ) → R are
given. Using [19, (32)] (see also [3, (2.13)]) we have for a ∈ A the following equation
in R�X�:

exp

( ∞∑

n=1

(−1)n−1ϕ(a�Fn)
Xn

n

)

= 1 +
∞∑

n=1

ϕ(an)Xn, (4.14)

where a�Fn =
n

︷ ︸︸ ︷
a �F · · · �F a ∈ QA and an =

n
︷ ︸︸ ︷
a · · · a ∈ P.

Now, let R = Q�q� and let ϕ be the composition of the algebra homomorphism�F
in Proposition 4.13 with the q-bracket, so that we obtain an algebra homomorphism
ϕ : (P, ∗F ) → Q�q� (see Proposition 3.11). We call a letter

[k
d

] ∈ A even if k ≥ 2,
d ≥ 0 and k + d is even. In the case F = s one then checks using (4.8) and (4.9) that
for two even letters a, a′ ∈ A, the product a �s a′ is again a linear combination of some
even letters (the Bernoulli numbers Bk for k ≥ 3 odd vanish). This inductively gives
that for an even letter a the element a�Fn is also a linear combination of even letters.
Then (4.14) implies that the q-bracket of Ps

( k,...,k
d,...,d

)
, which is ϕ(an) for a = [k

d

]
, can

be written as a polynomial in the q-brackets of Ps
( k′

d ′
)
with k′ + d ′ even. By (3.5)

for F = s these are exactly given by derivatives of Eisenstein series and therefore we
obtain a quasimodular form (of mixed weight).

Example 4.15 For example, in the case k = 2, d = 0 we get in depth two

〈

Ps

(
2, 2

0, 0

)〉

q
= 1

2
G2

2 − 1

2
G4 + 17

120
G2 + 31

5760
,

where we used Gk = − Bk
2k! + 〈Ps

( k
0

)〉q .
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The above algebraic setup can be seen as a generalization of the algebraH1 defined
in [17], as we explain now. Setting zk := [k

0

]
for k ≥ 1 we define

H1 = Q + 〈zk1 . . . zkr | r ≥ 1, k1, . . . , kr ≥ 1〉Q ⊂ P

and its subspace of admissible words

H0 = Q + 〈zk1 . . . zkr ∈ H1 | r ≥ 1, k1 ≥ 2〉Q .

The quasi-shuffle product onP reduces to a product on H1 and on H0. Moreover, the
product ∗ reduces to the classical harmonic product introduced in [17]. One can then
define the following Q-linear map2

ζ : H0 −→ Z
zk1 . . . zkr �−→ ζ(k1, . . . , kr ) . (4.15)

By the definition of multiple zeta values (1.5) as nested sum one then checks that this
map is an algebra homomorphism from (H0, ∗) to the algebra ofmultiple zeta valuesZ .
Since H1 = H0[z1] ([20, Proposition 1]) one can extend this algebra homomorphism
uniquely to an algebra homomorphism ζ ∗ : (H1, ∗) → Z[T ]which satisfies ζ ∗(z1) =
T and ζ ∗

|H0 = ζ . This gives the definition of (harmonic) regularized multiple zeta values

for k1, . . . , kr ≥ 1.
In the following we will generalize this result and the goal is to obtain an algebra

homomorphism (P, ∗) → Z[T ]. First, we define the analogue of admissible words
in our larger space P.

Definition 4.16 (i) For d ≥ 0 set vd := [1
d

]
. As an counterpart of H1 and H0 we

define

J1 = Q + 〈vd1 . . . vdr | r ≥ 1, d1, . . . , dr ≥ 0〉Q ⊂ P

J0 = Q + 〈vd1 . . . vdr ∈ J1 | r ≥ 1, dr ≥ 1〉Q .

(ii) We set P1 := J1H1, which is the space spanned by all words of the form

w =
[

1, . . . , 1

d1, . . . , dm

][
1

0

]j [k1, . . . , kr

0, . . . , 0

]

(4.16)

for some j ≥ 0, m, r ≥ 0, dm ≥ 1 (if m ≥ 1), and k1 ≥ 2 (if r ≥ 1).
(iii) A word w ∈ P1 of the form (4.16) is called admissible if j = 0. The subspace

of admissible words will be denoted by

P0 := J0H0 = 〈w ∈ P1 | w is admissible〉Q .

2 By abuse of notation, we use ζ for the name of the map as well as for the name of the object. From the
context, it should always be clear if we are talking about the map or the object.
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Notice that this notion of admissibility coincides with the classical notion of admis-
sibility on the subspace H1, namely, we have H0 = H1 ∩ P0. However, in contrast
to the classical setup, the spaces P1 and P0 are not closed under ∗ (or any ∗F ) and
therefore they are not subalgebras of P.

Lemma 4.17 Let N be the subspace of P spanned by all words in P\P1. Then N is
an ideal in (P, ∗).

Proof We need to show that for anyw ∈ Pwhich is not of the form (4.16) the product
w ∗ v is inN for any v ∈ P. If w ∈ P is not of the form (4.16) then w either contains
a letter

[k
d

]
or it contains a letter

[k
0

]
which is on the left of a letter

[1
d

]
with k ≥ 2

and d ≥ 1 in both cases. In the first case, the product of w with any element v will
be a sum of words which also contain either a letter

[k
d

]
or a

[k
d

] � b with some other
letter b of v. Since � is the component-wise addition we see that each word therefore
also contains a letter with top entry ≥ 2 and bottom entry ≥ 1. In the second case, all
words either also have a letter

[k
0

]
which is on the left of a letter

[1
d

]
, or a letter

[k
0

] � b

on the left of a letter
[1

d

] � c, where b, c are letters of v, etc. In all cases, the words are
not of the form (4.16) and are therefore elements in N.

As a generalization of H1 = H0[z1], we will now show that any element inP1 can
be written as a polynomial with respect to the quasi-shuffle product ∗with coefficients
in P0 up to elements in the ideal N. We write

[
1

0

]∗ j

=
[
1

0

]

∗ · · · ∗
[
1

0

]

︸ ︷︷ ︸
j

.

Proposition 4.18 For any word w ∈ P1 of length r there exist unique w j ∈ P0 such
that

w ≡
r∑

j=0

w j ∗
[
1

0

]∗ j

mod N. (4.17)

Moreover, if wt(w) = k then the w j are linear combinations of words of weight k − j .

Proof A word in w ∈ P1 can be written as

w = u

[
1

0

] j

v ( j ≥ 0, u ∈ J0, v ∈ H0).

Write u = [ 1,...,1
d1,...,dm

]
and v = [k1,...,kr

0,...,0

]
with dm > 0 and k1 > 1. By definition of the

quasi-shuffle product ∗ for j ≥ 1 we have that u
[1
0

] j−1
v ∗ [1

0

]
equals
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j w +
m−1∑

i=1

[
1, . . . , 1

d1, . . . , di

][
1

0

][
1, . . . , 1

di+1, . . . , dm

][
1

0

] j−1

v

+
r∑

i=1

u

[
1

0

] j−1[
k1, . . . , ki

0, . . . , 0

][
1

0

][
ki+1, . . . , kr

0, . . . , 0

]

+
m∑

i=1

[
1, . . . , 1

d1, . . . , di−1

]([
1

0

]

�
[
1

di

])[
1, . . . , 1

di+1, . . . , dm

][
1

0

] j−1

v

+
j−1∑

i=1

u

[
1

0

]i−1([
1

0

]

�
[
1

0

])[
1

0

] j−1−i

v

+
r∑

i=1

u

[
1

0

] j−1[
k1, . . . , ki−1

0, . . . , 0

]([
1

0

]

�
[

ki

0

])[
ki+1, . . . , kr

0, . . . , 0

]

.

Here every displayed term, except for jw, is either an element in N or is of the

form u′[1
0

] j ′
v′, where u′ ∈ J0 and v′ ∈ H0 and j ′ ≤ j − 1. By induction on j we

therefore see that w can be written as in (4.17).

For the uniqueness assume that
∑r

j=0 w j ∗ [1
0

]∗ j ≡ 0 mod N for some w j ∈
P0. Then the term wr ∗ [1

0

]∗r
is the only summand which contains classes of the

form (4.16) with j = r . Since there are no relations among elements in P1 modulo
N we immediately obtain wr = 0 and therefore w j = 0 for all j = 1, . . . , r .

Example 4.19 For k ≥ 2, d ≥ 1 we have

[
1, 1, k

d, 0, 0

]

=
[
1, k

d, 0

]

︸ ︷︷ ︸
w1

∗
[
1

0

]

−
[
1, k, 1

d, 0, 0

]

−
[
1, 1, k

0, d, 0

]

−
[
1, k + 1

d, 0

]

︸ ︷︷ ︸
w0

−
[
2, k

d, 0

]

︸ ︷︷ ︸
∈N

.

Here w0, w1 ∈ P0 and the last term is in N due to the 2 in the top left entry.

We end this subsection by defining an analogue of the involution ι on the spaceP.
Since Proposition 4.13 gives as for any well-normalized family of polynomials F an
isomorphism �F : (P, ∗F ) −→ (P,�) we give the following definition.

Definition 4.20 For anywell-normalized family of polynomialsF we define the linear
map ιF by

ιF : P −→ P

w �−→ (�−1
F ◦ ι ◦ �F )(w) .

When we choose the Bernoulli–Seki model F = s, then the involution ιs can be
described nicely using generating series. That is, given a depth r ≥ 1 we write A for
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the formal power series in P�X1, Y1, . . . , Xr , Yr � given by

A

(
X1, . . . , Xr

Y1, . . . , Yr

)

:=
∑

k1,...,kr ≥1
d1,...,dr ≥0

[
k1, . . . , kr

d1, . . . , dr

]

Xk1−1
1 . . . Xkr −1

r
Y d1
1

d1! . . .
Y dr

r

dr ! . (4.18)

Proposition 4.21 We have

ιs

(

A

(
X1, . . . , Xr

Y1, . . . , Yr

))

= A

(
Y1 + · · · + Yr , . . . , Y1 + Y2, Y1

Xr , Xr−1 − Xr , . . . , X1 − X2

)

,

where the involution ιs on the left is applied coefficient-wise.

Proof This can be proven by using the same change of variables as it was done in [2,
Theorem 2.3] by replacing the q-series there with the u-bracket of Ps and then using
the explicit description of ι mentioned in the proof of Lemma 2.7.

4.3 Bi-multiple zeta values

We now combine the results of Sect. 4.1 and 4.2 to define a bi-variant of multiple zeta
values. These can be seen as regularized limits of polynomial functions on partitions,
since they are defined for arbitrary words w ∈ P.

Definition 4.22 We define the linear map

ζ : P −→ Z[T ]
w =

[
k1, . . . , kr

d1, . . . , dr

]

�−→ ζ(w) = ζ

(
k1, . . . , kr

d1, . . . , dr

)

as follows:

(i) For w ∈ N we set ζ(w) = 0.
(ii) For w ∈ P0 we write w = [ 1,...,1, k1,...,kr

d1,...,dm , 0,...,0

]
and set

ζ

(
1, . . . , 1, k1, . . . , kr

d1, . . . , dm, 0, . . . , 0

)

= ξ(d1, . . . , dm) ζ(k1, . . . , kr ) ,

where k1 ≥ 2, dm ≥ 1 and where ξ is the conjugated multiple zeta value defined
in Definition 1.3.

(iii) For w = ∑r
j=0 w j ∗ [1

0

]∗ j
with w j ∈ P0 we set

ζ(w) =
r∑

j=0

ζ(w j ) T j .

Notice that due to Proposition 4.18 and part (i) the value ζ(w) in (iii) is well-defined.
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Theorem 4.23 For any well-normalized family of polynomials F the map

ζ : (P, ∗) −→ Z[T ]

is an ιF -invariant algebra homomorphism.

Proof First, we show that ζ is an algebra homomorphism. Since N is an ideal
(Lemma 4.17) and ζ(w) = 0 for w ∈ N, we can restrict to the case when w /∈ N,
i.e., w ∈ P1. Moreover, we can restrict to the elements in P0 due to the definition in
(iii). If w ∈ P0 we can assume that we can write w = [ 1,...,1,k1,...,kr

d1,...,dm ,0,...,0

]
with dm ≥ 1 (or

m = 0) and k1 ≥ 2 (or r = 0). Then we have by Corollary 4.10 that

ζ(w) = Zdeg Ps

(
1, . . . , 1, k1, . . . , kr

d1, . . . , dm, 0, . . . , 0

)

= Z�s(w) , (4.19)

where the weight limit Z is introduced in Definition 4.7. Now for k ≥ 1 and f ∈ P

set

Zk( f ) = lim
q→1

(1 − q)k〈 f 〉q ,

i.e., if k is the weight of f then Zk( f ) is exactly the weight limit of f .
Let w1, w2 ∈ P0 be given and write k1 = wt(w1), k2 = wt(w2) and k = k1 + k2.

Then, we have by Proposition 4.13 that �s(w1 ∗s w2) = �s(w1) � �s(w2) and
�b(w1 ∗ w2) = �b(w1) � �b(w2). Comparing the definition of ∗ = ∗b and ∗s , we
see that they are the same up to lower weight terms. In particular, their image under
Zk is the same. Moreover, since Zk is defined via the q-bracket, which is an algebra
homomorphism with respect to � (Proposition 3.11), we get

ζ(w1)ζ(w2) = Zk1�s(w1) Zk2�s(w2) = Zk (�s(w1) � �s(w2))

= Zk (�s(w1 ∗s w2)) = Zk (�s(w1 ∗ w2)) .

But this also equals ζ(w1 ∗w2), since w1 ∗w2 is a linear combination of words which
are either inP0 (i.e., they can be written as in (4.19)) or which are inN. For the latter,
the weight limit, and therefore the image under Zk , vanishes as seen in Lemma 4.8.

It remains to show that ζ is ιF -invariant for any well-normalized family of poly-

nomials F . Let w = ∑r
j=0 w j ∗ [1

0

]∗ j
with w j ∈ P0 and define the w̃ j ∈ P0 by

ιF (w) =: ∑r
j=0 w̃ j ∗

[1
0

]∗ j
.We need to show that ζ(w j ) = ζ(w̃ j ) for all j = 0, . . . , r .

Since the q-bracket is ι invariant we have 〈�F (w)〉q = 〈�F (ιF (w))〉q , i.e., we get,
up to q-series which vanish under the weight limit (elements in 〈ιF (N)〉q ), that

r∑

j=0

〈�F (w j )〉q

〈

�F
[
1

0

]〉 j

q
≡

r∑

j=0

〈�F (w̃ j )〉q

〈

�F
[
1

0

]〉 j

q
.
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For any well-normalized family of polynomials F we have

〈

�F
[
1

0

]〉

q
=

∑

n>0

qn

1 − qn
.

Since3
∑

n>0
qn

1−qn � − log(1−q)
(1−q)

(see [25]) and 〈�F (w j )〉q � 1
(1−q)

wt(w j )
(bySect. 4.1)

as q → 1, we see that for j ≥ 0 the weight limits of 〈�F (w j )〉q and 〈�F (w̃ j )〉q are
equal. By the discussion above applying ζ to words in P0 exactly yields the weight
limits, which are also independent of the choice of (well-normalized) F , from which
we deduce ζ(w j ) = ζ(w̃ j ) for all j = 1, . . . , r .

5 Induced relations amongmultiple zeta values

Here we interpret and provide relations among multiple zeta values using our partition
analogues.

5.1 Double shuffle relations

In this section, we want to explain why the relations 〈 f � g − f � g〉q = 0 for any
f , g ∈ QP (see Proposition 2.5) can be seen as an analogue of the double shuffle
relations for multiple zeta values. For this, we first try to indicate why the product �
can be seen as the correct analogue of the shuffle product of multiple zeta values. We
first recall the classical shuffle product. Setting H = Q〈x, y〉 the spaces H1 and H0

from the previous section can be identified with the subspaces Q+Hy and Q+ xHy
of H via zk = xk−1y. On these spaces, one can then define the shuffle product as the
Q-bilinear product, which satisfies 1� w = w� 1 = w for any word w ∈ H and

a1w1 � a2w2 = a1(w1 � a2w2) + a2(a1w1 � w2)

for any letters a1, a2 ∈ {x, y} and wordsw1, w2 ∈ H. The spacesH1 andH0 are closed
under this product and a classical result is (see [3, Corollary 2.10]) that the Q-linear
map ζ : H0 → Z defined in (4.15) is also an algebra homomorphism with respect
to the shuffle product �. For w, v ∈ H0 this then implies the (finite) double shuffle
relations ζ(w� v − w ∗ v) = 0.

By the definition of� together with Proposition 4.13 and Theorem 4.23, it becomes
clear why � can be seen as the analogue of the stuffle product. On the other hand, the
definition of � in Definition 2.3 as F � G = ι(ι(F)� ι(G)) is completely different to
the definition of� above and it is not obvious why this is the correct analogue. This
was recently shown by Brindle in [12], in a slightly different context, by showing that
the involution ι (which is called the partition relation) corresponds to a certain duality
introduced by Singer in [27]. With this one can then show (see [12, Theorem 3.46])

3 Here f (q) � g(q) means there exist constants c1, c2 with c1|g(q)| ≤ | f (q)| ≤ c2|g(q)| as q → 1.
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that the product defined by combining this duality with the stuffle product indeed gives
the correct analogue of the shuffle product.

In [4] it will be shown that one not only gets the finite double shuffle relations,
but also the extended double shuffle relations, i.e., conjecturally all relations among
multiple zeta values.

We will leave out the details here and just indicate this with two examples.

Example 5.1 The harmonic product of z2 and z3 is given by z2 ∗ z3 = z2z3+ z3z2+ z3,

i.e., ζ(2)ζ(3) = ζ(2, 3)+ζ(3, 2)+ζ(5). The harmonic product� of Ps

(
2
0

)
and Ps

(
3
0

)

is given by

Ps

(
2

0

)

� Ps

(
3

0

)

= Ps

(
2, 3

0, 0

)

+ Ps

(
3, 2

0, 0

)

+ Ps

(
5

0

)

− 1

12
Ps

(
3

0

)

,

which gives exactly the harmonic product among multiple zeta values after applying
the weight 5 limit (defined by Definition 4.7), since the last term vanishes. The shuffle
product of z2 and z3 is given by z2�z3 = xy�xxy = xyxxy+3xxyxy+6xxxyy =
z2z3 + 3z3z2 + 6z4z1. In particular, this implies the following shuffle relation for
multiple zeta values

ζ(2)ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) . (5.1)

The shuffle product � of Ps

(
2
0

)
and Ps

(
3
0

)
is given by

Ps

(
2

0

)

� Ps

(
3

0

)

= ι

(

ιPs

(
2

0

)

� ιPs

(
3

0

))

= ι

(
1

2
Ps

(
1

1

)

� Ps

(
1

2

))

,

= 1

2
ι

(

Ps

(
1, 1

1, 2

)

+ Ps

(
1, 1

2, 1

)

+ Ps

(
2

3

)

− Ps

(
1

3

))

= Ps

(
2, 3

0, 0

)

+ 3Ps

(
3, 2

0, 0

)

+6Ps

(
4, 1

0, 0

)

+ 3Ps

(
4

1

)

−3Ps

(
4

0

)

.

From the results in Sect. 4 we see that this exactly implies the shuffle product (5.1)
by taking the weight 5 limit (observe that the weight 5 limit of Ps

( 4
1

)
and of Ps

( 4
0

)

vanish).

Example 5.2 Recall Zdeg( f ) is a rational multiple of an even power of π for f ∈ M.
Therefore, having diagram (1.6) in mind, given a linear combination of multiple zeta
values which is a rational multiple of πk , one might ask if there exists a ‘natural lift’
to a polynomial function in P whose q-bracket is quasimodular. One such family is
given by a special case of Proposition 4.14, since Ps

( 2m,...,2m
0,...,0

)
is quasimodular for

m ≥ 1 with limit ζ(2m, · · · , 2m) = ζ({2m}n) ∈ Qπ2mn . Another famous family
of multiple zeta values which evaluates to a rational multiple of πk are given by the
3-1-formula, which states that for any n ≥ 1 we have

ζ(3, 1, . . . , 3, 1) = ζ({3, 1}n) = 2π4n

(4n + 2)! .
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The proof of this fact was first conjectured by Zagier, then proven in [9], and later
reduced to the following argument [10] using the shuffle product. One can show that
one has the following identity in the algebra (H0,�)

n∑

j=−n

(−1) j zn− j
2 � zn+ j

2 = 4n(z3z1)
n . (5.2)

The statement then follows after using ζ(2, . . . , 2) = π2n

(2n+1)! . We can consider the
left-hand side of this expression in our setup and get, by using again Proposition 4.14,
that for any n ≥ 1 the q-bracket of

T (n) :=
n∑

j=−n

(−1) j Ps

(
n− j

︷ ︸︸ ︷
2, . . . , 2

0, . . . , 0

)

� Ps

(
n+ j

︷ ︸︸ ︷
2, . . . , 2

0, . . . , 0

)

∈ M

is quasimodular. Similar to (5.2) this sum evaluates to 4n Ps
(3,1,...,3,1

0,...,0

)
plus some extra

terms with vanishing weight 4n limit. For example, we have

T (1) = 4Ps

(
3, 1

0, 0

)

+ 2Ps

(
3

1

)

− 2Ps

(
3

0

)

,

T (2) = 16Ps

(
3, 1, 3, 1

0, 0, 0, 0

)

+ 8Ps

(
3, 3, 1

1, 0, 0

)

− 8Ps

(
3, 3, 1

0, 1, 0

)

− 8Ps

(
3, 3, 1

0, 0, 0

)

+

+ 8Ps

(
3, 1, 3

1, 0, 1

)

− 8Ps

(
3, 1, 3

1, 0, 0

)

− 4Ps

(
3, 3

0, 2

)

+ 4Ps

(
3, 3

1, 1

)

+

− 4Ps

(
3, 3

1, 0

)

+ 4Ps

(
3, 3

0, 0

)

.

5.2 Bloch–Okounkov relations

The exponential isomorphism, introduced in [18] (see also [19]), maps any quasi-
shuffle algebra to a shuffle algebra on the samewords.We give an analogous definition
of an exponential map on our space of polynomial functions on partitions. It turns out
that the corresponding basis is convenient for expressing shifted symmetric functions
as elements of P (see, also, [1]).

Definition 5.3 Given m ∈ Zn , let Aut(m) = ∏
j∈Z r j (m)! with r j (m) the number of

indices i with mi = j . This allows us to define exp : P → P by

exp PF
(

k1, . . . , kr

d1, . . . , dr
; λ

)

=
∑

m1≥···≥mr >0

1

Aut(m)

r∏

j=1

m
d j
j fk j (rm j (λ)).
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Recall the Bernoulli polynomial Bk (k ≥ 0) is the unique polynomial such that

∫ x+1

x
Bk(u) du = xk .

Then, Bk is of degree k with as constant term Bk(0) = Bk the k-th Bernoulli number.

Proposition 5.4 For all k ≥ 2 we have

Qk = Bk(
1
2 )

k! +
k−2∑

i=0

i∑

j=0

(−1)i+ j

(k − i − 1)!
B j (

1
2 )

j ! exp PF
(

1, . . . , 1

0, . . . , 0
︸ ︷︷ ︸

i− j

, k − 1 − i

)

∈ M,

where Qk is a shifted symmetric function defined in (1.3).

Proof Given m > 0, abbreviate
∑

m′>m rm′(λ) by r>m . If λi = m, then r>m < i ≤
r>m−1 , hence

pk(λ) :=
∑

i≥1

(
(λi − i + 1

2 )
k − (−i + 1

2 )
k)

=
∞∑

m=1

rm (λ)∑

j=1

(
(m − r>m − j + 1

2 )
k − (−r>m − j + 1

2 )
k)

.

Therefore, letting

tb(m, λ) :=
rm (λ)∑

j=1

(r>m + j − 1
2 )

b,

one finds

pk(λ) =
∞∑

m=1

k−1∑

i=0

(
k

i

)

mk−i (−1)i ti (m, λ).

Expanding tb(m, λ) we have

tb(m, λ) =
rm (λ)∑

j=1

b∑

l=0

(
b

l

)

(r>m)l( j − 1
2 )

b−l .

By computing the generating series
∑

m≥0
∑n

j=1( j − 1
2 )

m zm

m! , one finds that

n∑

j=1

( j − 1
2 )

m = 1

m + 1

m∑

j=0

(−1) j
(

m + 1

j

)

B j (
1
2 ) nm+1− j ,
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so that

tb(m, λ) =
b∑

l=0

b−l∑

j=0

(
b

l

)

(r>m)l 1

b − l + 1
(−1) j

(
b − l + 1

j

)

B j (
1
2 )rm(λ)b−l+1− j

=
b∑

l=0

b−l∑

j=0

b!
l!(b − l + 1 − j)! j ! (−1) j B j (

1
2 )

(
∑

m1,...,ml>m

rm1(λ) · · · rml (λ)

)

rm(λ)b−l+1− j .

Write m = (m1, . . . , mb− j+1). Then,

tb(m, λ) =
b∑

l=0

b−l∑

j=0

b!
j ! (−1) j B j (

1
2 )

⎛

⎜
⎜
⎝

∑

m1≥...≥ml>m
ml+1=...=mb− j+1=m

rm1(λ) · · · rmb− j+1(λ)

Aut(m)

⎞

⎟
⎟
⎠

=
b∑

j=0

b!
j ! (−1) j B j (

1
2 )

⎛

⎝
∑

m1≥...≥mb− j+1=m

rm1(λ) · · · rmb− j+1(λ)

Aut(m)

⎞

⎠ , (5.3)

where we recall Aut(m) = ∏
j∈Z r j (m)!. Hence,

pk(λ) =
k−1∑

i=0

i∑

j=0

(−1)i+ j k!
(k − i)!

B j (
1
2 )

j ! exp PF
(

1, . . . , 1

0, . . . , 0
︸ ︷︷ ︸

i− j

, k − i

)

.

By definition Qk(λ) = βk + pk−1(λ)
(k−1)! , which finishes the proof.

Corollary 5.5 We have

∑

k≥2

k−2∑

i=0

(−1)i

(k − 1 − i)! ξ(0, . . . , 0
︸ ︷︷ ︸

i

, k − 1 − i) zk = exp

⎛

⎝
∑

n≥2

ζ(n)
zn + (−z)n

n

⎞

⎠ − 1

=
∑

k≥2

k−2∑

i=0

(−1)i ζ(k − i, 1, . . . , 1
︸ ︷︷ ︸

i

) zk .

Proof The first equality follows directly from Proposition 5.4 by taking the weight
limit. Note that for all f ∈ P we have Z exp f = Z f . Moreover, for computing the
weight limit of Qk we make use of the Bloch–Okounkov theorem, which expresses
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the generating series of the Qk as a certain Jacobi form [8, Theorem 6.1], i.e.,

∑

k≥0

〈Qk〉q zk−1 = 1

�(q, z)
:= 1

z
exp

(

2
∑

k≥2
k even

Gk(q)
zk

k

)

.

Recall that the Eisenstein series in this work are normalized such that the weight limit
of Gk equals ζ(k).

For the second equality, we combine Proposition 5.4 with the explicit formula for ι

in Remark 3.14 to find that

ι(Qk) = Bk(
1
2 )

k! +
k−2∑

i=0

i∑

j=0

(−1)i+ j B j (
1
2 )

j ! exp Ps

(
k − i, 1, . . . , 1

0, 0, . . . , 0
︸ ︷︷ ︸

i− j

)

.

Then, similarly, the second equality follows by taking the weight limit.

Remark 5.6 (i) The second equality in the above formula is a special case of the
Ohno–Zagier relations [24, Theorem 1] after setting s = 1 and x = −y, which
goes back to unpublished results of Zagier from 1995.

(ii) By calculating the q-bracket (instead of the weight limit) of both sides of the
equality in Proposition 5.4 one obtains Ohno–Zagier relations for q-analogues of
multiple zeta values. These might give special cases of the relations proven in [23].

The relation in the corollary above follows from exploiting the facts that 〈Qk〉q is a
quasimodular form, as well as that Qk is a polynomial function on partitions. The same
holds for any shifted symmetric function, i.e., any polynomial in the generators Qk .
We illustrate this by considering Q4Q3:

Example 5.7 Recall that by computing theweight limit of Q3 and Q4 , cf. Corollary 5.5,
we obtain ζ(3) − ζ(2, 1) = 0 and ζ(4) − ζ(3, 1) + ζ(2, 1, 1) = 0 respectively. If we
proceed in the same way computing the weight limit of Q3Q4 , we find (the trivial
statement) that the shuffle product of ζ(3) − ζ(2, 1) and ζ(4) − ζ(3, 1) + ζ(2, 1, 1)
vanishes as well. We can, however, do more.

Instead, consider

Q4Q3 − Q4 � Q3.

The q-bracket of this function vanishes, as can be seen from the fact that Q3(λ) =
−ω(Q3)(λ). The degree is equal to 6, whereas theweight is 7. Computing the degree-6
limit we obtain

−10ζ(5) + ζ(2, 3) + 3ζ(3, 2) + 16ζ(4, 1)+
− 16ζ(3, 1, 1) − 3ζ(2, 2, 1) − ζ(2, 1, 2) + 10ζ(2, 1, 1, 1) = 0,

a formula which easily follows from the duality relations for multiple zeta values.
Hence, we see that not only the weight limits but also the degree limits of polynomial
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functions on partitions give rise to interesting (families of) relations between multiple
zeta values.

5.3 Zagier’s arm-legmoments

In [30, Theorem 8] it is shown that for any even polynomial g ∈ Q[x, y] the q-bracket
of the function Ag : P → Q defined by

Ag(λ) :=
∑

ξ∈Yλ

g(a(ξ), b(ξ)) (5.4)

has a quasimodular q-bracket. Here the sum is over all cells ξ of the Young diagram
of λ and a(ξ) = a(ξ) + 1

2 , b(ξ) = b(ξ) + 1
2 , where a(ξ) and b(ξ) denote the arm-

and leg-lengths of the cell ξ .
We now show that, in fact, Ag ∈ M, and that by computing its weight limits we

obtain the sum formula for multiple zeta values.

Theorem 5.8 For all polynomials g ∈ Q[x, y], we have Ag ∈ M and the weight of Ag

is ≤ deg g + 2. For g(x, y) = xa yb

a!b! the difference

Ag −
a∑

i=0

(−1)a−i 1

i !(a + 1 − i)! exp PF
(

1, . . . , 1

i, 0, . . . , 0
︸ ︷︷ ︸

b−1

, a − i + 1

)

(5.5)

is of weight ≤ deg g + 1. Here, exp : P → P is defined in Definition 5.3.

Proof Suppose ξ = (x, y) ∈ Yλ . Then, we write m = λx and j = 1 − x + r≥m(λ),
where we denote r≥(λ) = ∑

′≥ r′(λ). Note that 1 ≤ j ≤ rm(λ). We can
rewrite (5.4) as

Ag(λ) =
∑

m≥y≥1

rm (λ)∑

j=1

g
(
m − y + 1

2 , r≥y(λ) − r≥m(λ) + j − 1
2

)
.

In particular, we see that for any polynomial g we have Ag ∈ P.
Analogous to (5.3), for b ≥ 0 we have

rm (λ)∑

j=1

(r≥y(λ) − r≥m(λ) + j − 1
2 )

b

=
b∑

j=0

b!
j ! (−1) j B j (

1
2 )

⎛

⎝
∑

m=m1≥...≥mb− j+1≥y

rm1(λ) · · · rmb− j+1(λ)

Aut(m)

⎞

⎠ .
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Hence, in the special case g(x, y) = xa yb

a!b! we get

Ag =
b∑

j=0

∑

m1≥...≥mb− j+1≥y≥1

(−1) j

a! j ! B j (
1
2 )(m1 − y + 1

2 )
a rm1 · · · rmb− j+1

Aut(m)

=
b∑

j=0

∑

m1≥...≥mb− j+1≥1

(−1) j

a! j ! B j (
1
2 )(s̃a+1(m1) − s̃a+1(m1 − mb− j+1))

rm1 · · · rmb− j+1

Aut(m)
, (5.6)

where s̃a+1(n) = ∑n
i=1(i − 1

2 )
a . As s̃a+1(n) is a polynomial in n of degree a + 1 and

with leading coefficient 1
a+1 , we have that

s̃a+1(u) − s̃a+1(u − v) = 1

a + 1

a∑

i=0

(
a + 1

i

)

(−1)a−i uiva−i+1 + . . . , (5.7)

where the ommited terms are of total degree at most a. Substituting (5.7) in (5.6) for
u = m1 and v = mb gives the desired result.

Corollary 5.9 (Sum formula) For all a, b ≥ 0, we have

a∑

i=0

(−1)a−i

i !(a + 1 − i)! ξ(i, 0, . . . , 0
︸ ︷︷ ︸

b−1

, a − i + 1) = ζ(a + b + 2)

=
∑

k1+...+kb+1=a+b+2
k1≥2, ki ≥1

ζ(k1, . . . , kb+1). (5.8)

Proof We compute the weight limit of (5.5). By [30, p. 367] we have

〈Ag〉q =
∞∑

n=1

n−1∑

i=0

g(i + 1
2 , n − i − 1

2 )
qn

1 − qn

for all g ∈ Q[x, y]. Now let g(x, y) = xa yb

a!b! . Then, as

n−1∑

i=0

g(i + 1
2 , n − i − 1

2 ) = 1

(a + b + 1)!na+b+1 + O(na+b),

we find Z(Ag) = ζ(a + b + 2), which proves the first equality.
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The second equality follows by applying the involution ι. Namely, the left hand
side of (5.8) is the coefficient of Xa+1 in

ζ

(

A

(
0, 0, . . . , 0

X , 0, . . . , 0

)

− A

(
0, 0, . . . , 0, 0

X , 0, . . . , 0,−X

))

,

where A is defined by (4.18). By Proposition 4.21, together with Theorem 4.23 by
which we know that ζ is ιs-invariant, this equals

ζ

(

A

(
X , . . . , X

0, 0, . . . , 0

)

− A

(
0, X , . . . , X

0, . . . , 0

))

.

The coefficients of Xa+1 in the latter expression is the sum over all admissiblemultiple
zeta values in weight a + b + 2.
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